[PaperRead]FcaNet: Frequency Channel Attention Networks

1,150 阅读7分钟

「这是我参与2022首次更文挑战的第12天,活动详情查看:2022首次更文挑战」。

从频域角度切入,弥补了现有通道注意力方法中特征信息不足的缺点,通过引入更多的频率分量来充分的利用信息。

论文名称:FcaNet: Frequency Channel Attention Networks

作者:Zequn Qin, Pengyi Zhang, Fei Wu, Xi Li

Code:github.com/cfzd/FcaNet

摘要

  • 通道注意力在计算机视觉领域取得了重大成功,许多工作都致力于设计更加高效的通道注意力模块,而忽略了一个问题,使用全局平均池化作为预处理。

  • 基于频率分析,本文从数学上证明了全局平均池化是频域特征分解的特例。在此基础上,推广了频域中的通道注意力预处理机制,并提出了全新的多谱通道注意力的FcaNet。

  • 只需改变原始SENet中的一行代码,在图像分类、目标检测和实例分割任务上与其他信道关注方法相比取得了最先进的结果。所提出方法与基线 SENet-50 相比,在参数数量和计算成本相同的情况下,在ImageNet上的 Top-1 精度可以提高 1.8%。

    image-20210808101504018

方法

动机

传统的通道注意方法致力于构建各种通道重要性权重函数,这种权重函数要求每个通道都有一个标量来进行计算,由于计算开销有限,简单有效的全局平均池化(GAP)成为了他们的不二之选。

但是一个潜在的问题是GAP是否能够捕获丰富的输入信息,也就是说,仅仅平均值是否足够表示通道注意力中的各个通道

因此做了以下分析:

  1. 不同的通道可能拥有相同的平均值,而其代表的语义信息是不相同的;
  2. 从频率分析的角度,可以证明GAP等价于DCT的最低频率,仅仅使用GAP相当于丢弃了其他许多包含着通道特征的信息;
  3. CBAM还表示,仅使用GAP是不够的,因此额外引入了GMP。

分析了GAP的有效性和不足之后,根据DCT提出了FcaNet。

DCT(离散余弦变换)

在介绍主要方法之前,我们需要了解一下DCT,其主要用于数据或图像的压缩,能够将空间域的信号转换到频域上,具有良好的去相关性的性能。二维的DTC公式如下:

fh,w2d=i=0H1j=0W1xi,j2dcos(πhH(i+12))cos(πhW(j+12))(1)f_{h,w}^{2d}=\sum_{i=0}^{H-1}\sum_{j=0}^{W-1}x_{i,j}^{2d}cos(\frac{\pi h}{H}(i+\frac12))cos(\frac{\pi h}{W}(j+\frac12))\tag1

二维的逆DTC公式如下:

xh,w2d=h=0H1w=0W1fi,j2dcos(πhH(i+12))cos(πhW(j+12))(2)x_{h,w}^{2d}=\sum_{h=0}^{H-1}\sum_{w=0}^{W-1}f_{i,j}^{2d}cos(\frac{\pi h}{H}(i+\frac12))cos(\frac{\pi h}{W}(j+\frac12))\tag2

我们称二者的共有项为基函数:

Bh,wi,j=cos(πhH(i+12))cos(πhW(j+12))B_{h,w}^{i,j}=cos(\frac{\pi h}{H}(i+\frac12))cos(\frac{\pi h}{W}(j+\frac12))

下面证明GAP是二维DCT的特例,令h,w都为0:

f0,02d=i=0H1j=0W1xi,j2dcos(1,0,00H(i+12))cos(1,0,00W(j+12))=i=0H1j=0W1xi,j2d=gap(x2d)HW\begin{aligned} f_{0,0}^{2d} &=\sum_{i=0}^{H-1}\sum_{j=0}^{W-1}x_{i,j}^{2d}cos(\frac{\textcolor{rgb}{1,0,0}{0}}{H}(i+\frac12))cos(\frac{\textcolor{rgb}{1,0,0}{0}}{W}(j+\frac12))\\ &=\sum_{i=0}^{H-1}\sum_{j=0}^{W-1}x^{2d}_{i,j}\\ &=gap(x^{2d})HW \end{aligned}

这代表着二维DCT​​​变换的最低频率分量,因此SENet​可以表示为:

image-20210808123458568

根据公式(2)​​​​我们可以知道特征可以被分解为不同频率分量的组合,自然而然地,可以将其在通道注意力上进行推广——使用多个频率分量。

Multi-Spectral Attention Module

image-20210808123522937

主要分为以下两个步骤:

  1. 将输入分组,选取不同频率分量
  2. 与SENet两层的MLP得到通道注意力权重

并且只要修改一行代码就可以实现:

image-20210808140200023

但实际上并没有这么简单

选择哪些频率分量?

频率分量的选择显得十分Empirically

首先验证单个频率分量的效果,作者在ResNet50上将ImageNet最小映射到了7\times 7的大小,这意味着总共有49种频率分量,最终结果如下图所示:

image-20210808135215344

可以发现低频分量拥有更好的表现,这同时验证了SENet的成功,此外,可以表明其他频率分量也拥有良好的性能。

至于多种频率分量的组合过于复杂,因此提出以下三种方法来进行组合:low-k,top-k,bot-k

image-20210808135803284low-k:根据频率由低到高选取

top-k:根据上文的性能排名由高到低选取

bot-k:根据上文的性能排名有低到高选取

实验结果如下:

image-20210808140100519

这仍然表明低频分量的重要性

并且发现top-16的效果最好:

image-20210808145314657

如何获得DCT权重

首先获得选取的频率分量的“坐标”:

 def get_freq_indices(method):  # 获得分量排名的坐标
     assert method in ['top1', 'top2', 'top4', 'top8', 'top16', 'top32',
                       'bot1', 'bot2', 'bot4', 'bot8', 'bot16', 'bot32',
                       'low1', 'low2', 'low4', 'low8', 'low16', 'low32']
     num_freq = int(method[3:])
     if 'top' in method:
         all_top_indices_x = [0, 0, 6, 0, 0, 1, 1, 4, 5, 1, 3, 0, 0,
                              0, 3, 2, 4, 6, 3, 5, 5, 2, 6, 5, 5, 3, 3, 4, 2, 2, 6, 1]
         all_top_indices_y = [0, 1, 0, 5, 2, 0, 2, 0, 0, 6, 0, 4, 6,
                              3, 5, 2, 6, 3, 3, 3, 5, 1, 1, 2, 4, 2, 1, 1, 3, 0, 5, 3]
         mapper_x = all_top_indices_x[:num_freq]
         mapper_y = all_top_indices_y[:num_freq]
     elif 'low' in method:
         all_low_indices_x = [0, 0, 1, 1, 0, 2, 2, 1, 2, 0, 3, 4, 0,
                              1, 3, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4]
         all_low_indices_y = [0, 1, 0, 1, 2, 0, 1, 2, 2, 3, 0, 0, 4,
                              3, 1, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3]
         mapper_x = all_low_indices_x[:num_freq]
         mapper_y = all_low_indices_y[:num_freq]
     elif 'bot' in method:
         all_bot_indices_x = [6, 1, 3, 3, 2, 4, 1, 2, 4, 4, 5, 1, 4,
                              6, 2, 5, 6, 1, 6, 2, 2, 4, 3, 3, 5, 5, 6, 2, 5, 5, 3, 6]
         all_bot_indices_y = [6, 4, 4, 6, 6, 3, 1, 4, 4, 5, 6, 5, 2,
                              2, 5, 1, 4, 3, 5, 0, 3, 1, 1, 2, 4, 2, 1, 1, 5, 3, 3, 3]
         mapper_x = all_bot_indices_x[:num_freq]
         mapper_y = all_bot_indices_y[:num_freq]
     else:
         raise NotImplementedError
     return mapper_x, mapper_y

根据公式进行计算,在空间维度上进行求和,得到DCT权重:

 class MultiSpectralDCTLayer(nn.Module):
     """
     Generate dct filters
     """
 
     def __init__(self, height, width, mapper_x, mapper_y, channel):
         super(MultiSpectralDCTLayer, self).__init__()
 
         assert len(mapper_x) == len(mapper_y)
         assert channel % len(mapper_x) == 0
 
         self.num_freq = len(mapper_x)
 
         # fixed DCT init
         self.register_buffer('weight', self.get_dct_filter(
             height, width, mapper_x, mapper_y, channel))  # 对应于公式中的H,W,i,j,C
 
         # fixed random init
         # self.register_buffer('weight', torch.rand(channel, height, width))
 
         # learnable DCT init
         # self.register_parameter('weight', self.get_dct_filter(height, width, mapper_x, mapper_y, channel))
 
         # learnable random init
         # self.register_parameter('weight', torch.rand(channel, height, width))
 
         # num_freq, h, w
 
     def forward(self, x):
         assert len(x.shape) == 4, 'x must been 4 dimensions, but got ' + \
             str(len(x.shape))
         # n, c, h, w = x.shape
 
         x = x * self.weight
 
         result = torch.sum(x, dim=[2, 3])  # 在空间维度上求和
         return result
 
     def build_filter(self, pos, freq, POS):  # 对应i/j, h/w, H/W
         result = math.cos(math.pi * fre关于q * (pos + 0.5) /
                           POS) / math.sqrt(POS)  # 基函数公式的一半
         if freq == 0:
             return result  # 对应gap的形式
         else:
             return result * math.sqrt(2)  #
 
     def get_dct_filter(self, tile_size_x, tile_size_y, mapper_x, mapper_y, channel):  # 对应与H,W,i,j,C
         dct_filter = torch.zeros(channel, tile_size_x,
                                  tile_size_y)  # 对于每一个BATCH都是相同的
 
         c_part = channel // len(mapper_x)  # 每一份的通道长度
 
         for i, (u_x, v_y) in enumerate(zip(mapper_x, mapper_y)):
             for t_x in range(tile_size_x):
                 for t_y in range(tile_size_y):
                     dct_filter[i * c_part: (i+1)*c_part, t_x, t_y] = self.build_filter(
                         t_x, u_x, tile_size_x) * self.build_filter(t_y, v_y, tile_size_y)  # 将f的求和式展开,储存在一个图中,这里实际上是一个3维的,因为这些通道的权重相同,最后再乘以原图求和得到f
 
         return dct_filter
 

网络效果

ImageNet分类:

image-20210808151932549

COCO目标检测:

image-20210808152047948

一些思考

关于将通道分组,使用不同的频率分量加权,但是这些分量单独的效果都没有GAP好,而就结果而言,效果却明显好与GAP的SENet,可能是引入不同的频率分量增加了通道注意力的多样性,由于使用了全连接层,其可以凭借更多的信息来得到权重。

其次,是否应该是对所有的通道进行不同的频率分量加权,因为不同通道上表示的信息不同,如何保证不会有更多信息的丢失,有人提出了同样的问题

image-20210808152739642

我认为这实际上是一种在空间上的加权和,使得SEBlock更充分地考虑的其他信息,由于通道中的信息存在冗余,这样分组使用不同的加权和形式也不会造成信息丢失,具体看我提的issuehttps://github.com/cfzd/FcaNet/issues/18

image-20210812234510481

改进点

关于频率分量的选取,使用7\times 7的特征图进行实验是否具有代表性,是否有数学上的方法来进行评价选取,或是依据某种规律选取,比如等比数列,等差数列等;或者是一些非手工特征方法,通过引入参数来学习选取,比如选取一定范围内的所有特征分量,使用可学习的参数进行加权,来获得更优的线性组合。