String
Sds (Simple Dynamic String,简单动态字符串)是 Redis 底层所使用的字符串表示, 几乎所有的 Redis 模块中都用了 sds。
sds 的用途
Sds 在 Redis 中的主要作用有以下两个:
实现字符串对象(StringObject);
在 Redis 程序内部用作 char* 类型的替代品;
实现字符串对象
Redis 是一个键值对数据库(key-value DB), 数据库的值可以是字符串、集合、列表等多种类型的对象, 而数据库的键则总是字符串对象。
对于那些包含字符串值的字符串对象来说, 每个字符串对象都包含一个 sds 值。
用 sds 取代 C 默认的 char* 类型
因为 char* 类型的功能单一, 抽象层次低, 并且不能高效地支持一些 Redis 常用的操作(比如追加操作和长度计算操作), 所以在 Redis 程序内部, 绝大部分情况下都会使用 sds 而不是 char* 来表示字符串。
性能问题在稍后介绍 sds 定义的时候就会说到, 因为我们还没有了解过 Redis 的其他功能模块, 所以也没办法详细地举例说那里用到了 sds , 不过在后面的章节中, 我们会经常看到其他模块(几乎每一个)都用到了 sds 类型值。
目前来说, 只要记住这个事实即可: 在 Redis 中, 客户端传入服务器的协议内容、 aof 缓存、 返回给客户端的回复, 等等, 这些重要的内容都是由 sds 类型来保存的。
Redis 中的字符串
在 C 语言中,字符串可以用一个 \0 结尾的 char 数组来表示。
比如说, hello world 在 C 语言中就可以表示为 "hello world\0" 。
这种简单的字符串表示,在大多数情况下都能满足要求,但是,它并不能高效地支持长度计算和追加(append)这两种操作:
-
每次计算字符串长度(strlen(s))的复杂度为 θ(N) 。
-
对字符串进行 N 次追加,必定需要对字符串进行 N 次内存重分配(realloc)。
在 Redis 内部, 字符串的追加和长度计算很常见, 而 APPEND 和 STRLEN 更是这两种操作,在 Redis 命令中的直接映射, 这两个简单的操作不应该成为性能的瓶颈。
另外, Redis 除了处理 C 字符串之外, 还需要处理单纯的字节数组, 以及服务器协议等内容, 所以为了方便起见, Redis 的字符串表示还应该是二进制安全的: 程序不应对字符串里面保存的数据做任何假设, 数据可以是以 \0 结尾的 C 字符串, 也可以是单纯的字节数组, 或者其他格式的数据。
考虑到这两个原因, Redis 使用 sds 类型替换了 C 语言的默认字符串表示: sds 既可高效地实现追加和长度计算, 同时是二进制安全的。
sds 的实现
实际上, 它的实现由以下两部分组成:
typedef char *sds;
struct sdshdr {
// buf 已占用长度
int len;
// buf 剩余可用长度
int free;
// 实际保存字符串数据的地方
char buf[];
};
其中,类型 sds 是 char * 的别名(alias),而结构 sdshdr 则保存了 len 、 free 和 buf 三个属性。
作为例子,以下是新创建的,同样保存 hello world 字符串的 sdshdr 结构:
struct sdshdr {
len = 11;
free = 0;
buf = "hello world\0"; // buf 的实际长度为 len + 1
};
通过 len 属性, sdshdr 可以实现复杂度为 θ(1) 的长度计算操作。
另一方面, 通过对 buf 分配一些额外的空间, 并使用 free 记录未使用空间的大小, sdshdr 可以让执行追加操作所需的内存重分配次数大大减少, 下一节我们就会来详细讨论这一点。
当然, sds 也对操作的正确实现提出了要求 —— 所有处理 sdshdr 的函数,都必须正确地更新 len 和 free 属性,否则就会造成 bug 。
优化追加操作
利用 sdshdr 结构,除了可以用 θ(1) 复杂度获取字符串的长度之外,还可以减少追加(append)操作所需的内存重分配次数,以下就来详细解释这个优化的原理。
为了易于理解,我们用一个 Redis 执行实例作为例子,解释一下,当执行以下代码时, Redis 内部发生了什么:
redis> SET msg "hello world"
OK
redis> APPEND msg " again!"
(integer) 18
redis> GET msg
"hello world again!"
首先, SET 命令创建并保存 hello world 到一个 sdshdr 中,这个 sdshdr 的值如下:
struct sdshdr {
len = 11;
free = 0;
buf = "hello world\0";
}
当执行 APPEND 命令时,相应的 sdshdr 被更新,字符串 " again!" 会被追加到原来的 "hello world" 之后:
struct sdshdr {
len = 18;
free = 18;
buf = "hello world again!\0 "; // 空白的地方为预分配空间,共 18 + 18 + 1 个字节
}
注意, 当调用 SET 命令创建 sdshdr 时, sdshdr 的 free 属性为 0 , Redis 也没有为 buf 创建额外的空间 —— 而在执行 APPEND 之后, Redis 为 buf 创建了多于所需空间一倍的大小。
在这个例子中, 保存 "hello world again!" 共需要 18 + 1 个字节, 但程序却为我们分配了 18 + 18 + 1 = 37 个字节 —— 这样一来, 如果将来再次对同一个 sdshdr 进行追加操作, 只要追加内容的长度不超过 free 属性的值, 那么就不需要对 buf 进行内存重分配。
比如说, 执行以下命令并不会引起 buf 的内存重分配, 因为新追加的字符串长度小于 18 :
struct sdshdr {
len = 25;
free = 11;
buf = "hello world again! again!\0 "; // 空白的地方为预分配空间,共 18 + 18 + 1 个字节
}
在目前版本的 Redis 中, SDS_MAX_PREALLOC 的值为 1024 * 1024 , 也就是说, 当大小小于 1MB 的字符串执行追加操作时, sdsMakeRoomFor 就为它们分配多于所需大小一倍的空间; 当字符串的大小大于 1MB , 那么 sdsMakeRoomFor 就为它们额外多分配 1MB 的空间。
这种分配策略会浪费内存吗?
执行过 APPEND 命令的字符串会带有额外的预分配空间, 这些预分配空间不会被释放, 除非该字符串所对应的键被删除, 或者等到关闭 Redis 之后, 再次启动时重新载入的字符串对象将不会有预分配空间。
因为执行 APPEND 命令的字符串键数量通常并不多, 占用内存的体积通常也不大, 所以这一般并不算什么问题。
另一方面, 如果执行 APPEND 操作的键很多, 而字符串的体积又很大的话, 那可能就需要修改 Redis 服务器, 让它定时释放一些字符串键的预分配空间, 从而更有效地使用内存。