【路飞】算法与数据结构-面试题 04.08. 首个共同祖先

94 阅读1分钟

不管全世界所有人怎么说,我都认为自己的感受才是正确的。无论别人怎么看,我绝不打乱自己的节奏。喜欢的事自然可以坚持,不喜欢的怎么也长久不了。

LeetCode:原题地址

题目要求

设计并实现一个算法,找出二叉树中某两个节点的第一个共同祖先。不得将其他的节点存储在另外的数据结构中。注意:这不一定是二叉搜索树。

例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]

    3
   / \
  5   1
 / \ / \
6  2 0  8
  / \
 7   4

示例 1:

输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3

示例 2:

输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。

说明:

所有节点的值都是唯一的。
pq 为不同节点且均存在于给定的二叉树中。

思路

三种情况,要么p q 有一个是root
要么p, q 分别在 root 左孩子,右孩子上
要么,p,q z都在root的同一侧

/**
 * Definition for a binary tree node.
 * function TreeNode(val) {
 *     this.val = val;
 *     this.left = this.right = null;
 * }
 */
/**
 * @param {TreeNode} root
 * @param {TreeNode} p
 * @param {TreeNode} q
 * @return {TreeNode}
 */
var lowestCommonAncestor = function(root, p, q) {
    if(!root || root == p || root == q) {
        return root
    }
    let left = lowestCommonAncestor(root.left, p, q);
    let right = lowestCommonAncestor(root.right, p, q);
    if(left && right)  return root
    return left ? left : right;
};