URL和URI
与 URI(统一资源标识符)相比,我们更熟悉 URL(Uniform Resource Locator,统一资源定位符)。URL 正是使用 Web 浏览器等访问 Web 页面时需要输入的网页地址。比如,http://byr.pt/
就是 URL。
URI 用字符串标识某一互联网资源,而 URL 表示资源的地点(互联网上所处的位置)。可见 URL 是 URI 的子集。
URI 格式
绝对 URI 的格式:
但并不是所有的应用程序都符合RFC标准,开发者有可能自定标准
HTTP请求和响应
请求报文
请求报文是由请求方法、请求 URI、协议版本、可选的请求首部字 段和内容实体构成的。
响应报文
响应报文基本上由协议版本、状态码(表示请求成功或失败的数字 代码)、用以解释状态码的原因短语、可选的响应首部字段以及实体主体构成。
GET
POST(一般用来发送数据)
PUT:传输文件
PUT 方法用来传输文件。就像 FTP 协议的文件上传一样,要求在 请求报文的主体中包含文件内容,然后保存到请求 URI 指定的位置。
但是,鉴于 HTTP/1.1 的 PUT 方法自身不带验证机制,任何人都可 以上传文件 , 存在安全性问题,因此一般的 Web 网站不使用该方法。若 配合 Web 应用程序的验证机制,或架构设计采用 REST(REpresentational State Transfer,表征状态转移)标准的同类 Web 网站,就可能会开放使 用 PUT 方法。
DELETE:删除文件
DELETE 方法用来删除文件,是与 PUT 相反的方法。DELETE 方 法按请求 URI 删除指定的资源。 但是,HTTP/1.1 的 DELETE 方法本身和 PUT 方法一样不带验证机 制,所以一般的 Web 网站也不使用 DELETE 方法。当配合 Web 应用程 序的验证机制,或遵守 REST 标准时还是有可能会开放使用的。
HEAD:获得报文首部
HEAD 方法和 GET 方法一样,只是不返回报文主体部分。用于确认 URI 的有效性及资源更新的日期时间等
OPTIONS:询问支持的方法
OPTIONS 方法用来查询针对请求 URI 指定的资源支持的方法。
TRACE:追踪路径
TRACE 方法是让 Web 服务器端将之前的请求通信环回给客户端的 方法。 发送请求时,在 Max-Forwards 首部字段中填入数值,每经过一个 服务器端就将该数字减 1,当数值刚好减到 0 时,就停止继续传输,最后接收到请求的服务器端则返回状态码 200 OK 的响应。
客户端通过 TRACE 方法可以查询发送出去的请求是怎样被加工修 改 / 篡改的。这是因为,请求想要连接到源目标服务器可能会通过代理中转,TRACE 方法就是用来确认连接过程中发生的一系列操作。
但是,TRACE 方法本来就不怎么常用,再加上它容易引发 XST (Cross-Site Tracing,跨站追踪)攻击,通常就更不会用到了。
CONNECT:要求用隧道协议连接代理
CONNECT 方法要求在与代理服务器通信时建立隧道,实现用隧道 协议进行 TCP 通信。主要使用 SSL(Secure Sockets Layer,安全套接 层)和 TLS(Transport Layer Security,传输层安全)协议把通信内容加密后经网络隧道传输。 CONNECT 方法的格式如下所示。
CONNECT 代理服务器名:端口号 HTTP版本
降低通信开销,加快页面响应
可持久化连接
使用浏览器浏览一个包含多张图片的 HTML 页面时,在发送请求访问 HTML 页面资源的同时,也会请求该 HTML 页面里包含的其他资源。早期对每个资源的请求都有TCP连接建立和断开,因此,每次的请求都会造成无谓的 TCP 连接建立和断开, 增加通信量的开销。
为解决上述 TCP 连接的问题,HTTP/1.1 和一部分的 HTTP/1.0 想出 了持久连接(HTTP Persistent Connections,也称为 HTTP keep-alive 或 HTTP connection reuse)的方法。持久连接的特点是,只要任意一端没 有明确提出断开连接,则保持 TCP 连接状态。
在 HTTP/1.1 中,所有的连接默认都是持久连接
管道化
持久连接使得多数请求以管线化(pipelining)方式发送成为可能。 从前发送请求后需等待并收到响应,才能发送下一个请求。管线化技术 出现后,不用等待响应亦可直接发送下一个请求。
使用 Cookie 的状态管理
HTTP 是无状态协议,它不对之前发生过的请求和响应的状态进行管理。也就是说,无法根据之前的状态进行本次的请求处理,无状态的好处是减少了通信开销。 但假设要求登录认证的 Web 页面本身无法进行状态的管理(不记录已登录的状态),那么每次跳转新页面不是要再次登录,就是要在每次请求报文中附加参数来管理登录状态。
保留无状态协议这个特征的同时又要解决类似的矛盾问题,于是引 入了 Cookie 技术。Cookie 技术通过在请求和响应报文中写入 Cookie 信 息来控制客户端的状态。
Cookie 会根据从服务器端发送的响应报文内的一个叫做 Set-Cookie 的首部字段信息,通知客户端保存 Cookie。当下次客户端再往该服务器发送请求时,客户端会自动在请求报文中加入 Cookie 值后发送出去。 服务器端发现客户端发送过来的 Cookie 后,会去检查究竟是从哪 一个客户端发来的连接请求,然后对比服务器上的记录,最后得到之前 的状态信息
发生 Cookie 交互的情景,HTTP 请求报文和响应报文的 内容如下 :
1 请求报文(没有 Cookie 信息的状态)\
Java复制代码
1
GET /reader/ HTTP/1.1
2
Host: hackr.jp
3
*首部字段内没有Cookie的相关信息
2响应报文 (服务器端生成 Cookie 信息)\
Java复制代码
1
HTTP/1.1 200 OK
2
Date: Thu, 12 Jul 2012 07:12:20 GMT
3
Server: Apache
4
<Set-Cookie: sid=1342077140226724; path=/; expires=Wed,10-Oct-12 07:12:20 GMT>
5
Content-Type: text/plain; charset=UTF-8
3 请求报文(自动发送保存着的 Cookie 信息)
Java复制代码
1
GET /image/ HTTP/1.1
2
Host: hackr.jp
3
Cookie: sid=1342077140226724