简介
索引是存储引擎用于快速找到记录的一种数据结构。这是索引的基本功能,除此之外,本章还将讨论索引其他一些方面有用的属性。
索引对于良好的性能非常关键。尤其是当表中的数据量越来越大时,索引对性能的影响愈发重要。在数据量较小且负载较低时,不恰当的索引对性能的影响可能还不明显,但当数据量逐渐增大时,性能则会急剧下降。
不过,索引却经常被忽略,有时候甚至被误解,所以在实际案例中经常会遇到由糟糕索引导致的问题。这也是我们把索引优化放在了靠前的章节,甚至比查询优化还靠前的原因。
索引优化应该是对查询性能优化最有效的手段了。索引能够轻易将查询性能提高几个数量级,“最优”的索引有时比一个“好的”索引性能要好两个数量级。创建一个真正“最优”的索引经常需要重写查询,所以,本章和下一章的关系非常紧密。
索引基础
在MySQL中,查找某些行时,其先在索引中找到对应值,然后根据匹配的索引记录找到对应的数据行。假如要运行下面的查询:
mysql> SELECT first_name FROM sakila.actor WHERE actor_id = 5;
如果在actor_id列上建有索引,则 MySQL将使用该索引找到actor_id为5的行,也就是说,MySQL 先在索引上按值进行查找,然后返回所有包含该值的数据行。
索引可以包含一个或多个列的值。如果索引包含多个列,那么列的顺序也十分重要,因为MySQL只能高效地使用索引的最左前缀列。创建一个包含两个列的索引,和创建两个只包含一列的索引是大不相同的,下面将详细介绍。
索引的类型
索引有很多种类型,可以为不同的场景提供更好的性能。在MySQL中,索引是在存储引擎层而不是服务器层实现的。所以,并没有统一的索引标准:不同存储引擎的索引的工作方式并不一样,也不是所有的存储引擎都支持所有类型的索引。即使多个存储引擎支持同一种类型的索引,其底层的实现也可能不同。
下面我们先来看看MySQL支持的索引类型,以及它们的优点和缺点。
B-Tree索引
使用术语“B-Tree”,是因为MySQL在CREATE TABLE和其他语句中也使用该关键字。不过,底层的存储引擎也可能使用不同的存储结构,例如,NDB集群存储引擎内部实际上使用了T-Tree结构存储这种索引,即使其名字是BTREE ; InnoDB则使用的是B+Tree。
存储引擎以不同的方式使用B-Tree索引,性能也各有不同,各有优劣。例如,MyISAM使用前缀压缩技术使得索引更小,但InnoDB则按照原数据格式进行存储。再如MyISAM索引通过数据的物理位置引用被索引的行,而InnoDB则根据主键引用被索引的行。
B-Tree通常意味着所有的值都是按顺序存储的,并且每一个叶子页到根的距离相同。图5-1展示了B-Tree索引的抽象表示,大致反映了InnoDB索引是如何工作的。MyISAM使用的结构有所不同,但基本思想是类似的。
B-Tree索引能够加快访问数据的速度,因为存储引擎不再需要进行全表扫描来获取需要的数据,取而代之的是从索引的根节点(图示并未画出)开始进行搜索。根节点的槽中存放了指向子节点的指针,存储引擎根据这些指针向下层查找。通过比较节点页的值和要查找的值可以找到合适的指针进入下层子节点,这些指针实际上定义了子节点页中值的上限和下限。最终存储引擎要么是找到对应的值,要么该记录不存在。
叶子节点比较特别,它们的指针指向的是被索引的数据,而不是其他的节点页(不同引擎的“指针”类型不同)。图5-1中仅绘制了一个节点和其对应的叶子节点,其实在根节点和叶子节点之间可能有很多层节点页。树的深度和表的大小直接相关。
B-Tree对索引列是顺序组织存储的,所以很适合查找范围数据。例如,在一个基于文本域的索引树上,按字母顺序传递连续的值进行查找是非常合适的,所以像“找出所有以Ⅰ到K开头的名字”这样的查找效率会非常高。
例:
请注意,索引对多个值进行排序的依据是CREATE TABLE 语句中定义索引时列的顺序。看一下最后两个条目,两个人的姓和名都一样,则根据他们的出生日期来排列顺序。
可以使用B-Tree索引的查询类型
B-Tree索引适用于全键值、键值范围或键前缀查找。其中键前缀查找只适用于根据最左前缀的查找。前面所述的索引对如下类型的查询有效。
全值匹配
全值匹配指的是和索引中的所有列进行匹配,例如前面提到的索引可用于查找姓名为Cuba Allen、出生于1960-01-01的人。
匹配最左前缀
前面提到的索引可用于查找所有姓为Allen的人,即只使用索引的第一列。匹配列前缀
也可以只匹配某一列的值的开头部分。例如前面提到的索引可用于查找所有以J开头的姓的人。这里也只使用了索引的第一列。
匹配范围值
例如前面提到的索引可用于查找姓在Allen和Barrymore之间的人。这里也只使用了索引的第一列。
精确匹配某一列并范围匹配另外一列
前面提到的索引也可用于查找所有姓为Allen,并且名字是字母K开头(比如Kim、Karl等)的人。即第一列last_name 全匹配,第二列first_name范围匹配。
只访问索引的查询
B-Tree通常可以支持“只访问索引的查询”,即查询只需要访问索引,而无须访问数据行。后面我们将单独讨论这种“覆盖索引”的优化。
因为索引树中的节点是有序的,所以除了按值查找之外,索引还可以用于查询中的ORDER BY操作(按顺序查找)。一般来说,如果B-Tree可以按照某种方式查找到值,那么也可以按照这种方式用于排序。所以,如果ORDER BY子句满足前面列出的几种查询类型,则这个索引也可以满足对应的排序需求。
下面是一些关于B-Tree索引的限制:
- 如果不是按照索引的最左列开始查找,则无法使用索引。例如上面例子中的索引无法用于查找名字为Bill的人,也无法查找某个特定生日的人,因为这两列都不是最左数据列。类似地,也无法查找姓氏以某个字母结尾的人。
- 不能跳过索引中的列。也就是说,前面所述的索引无法用于查找姓为Smith并且在某个特定日期出生的人。如果不指定名(first_name),则 MySQL只能使用索引的第一列。
- 如果查询中有某个列的范围查询,则其右边所有列都无法使用索引优化查找。 例如有查询WHERE last_name='Smith' AND first_name LIKE 'J%’AND dob = '1976-12-23',这个查询只能使用索引的前两列,因为这里LIKE是一个范围条件(但是服务器可以把其余列用于其他目的)。如果范围查询列值的数量有限,那么可以通过使用多个等于条件来代替范围条件。在本章的索引案例学习部分,我们将演示一个详细的案例。
到这里读者应该可以明白,前面提到的索引列的顺序是多么的重要:这些限制都和索引列的顺序有关。在优化性能的时候,可能需要使用相同的列但顺序不同的索引来满足不同类型的查询需求。
也有些限制并不是B-Tree本身导致的,而是MySQL优化器和存储引擎使用索引的方式导致的,这部分限制在未来的版本中可能就不再是限制了。.
哈希索引
哈希索引 (hash index)基于哈希表实现,只有精确匹配索引所有列的查询才有效。对于每一行数据,存储引擎都会对所有的索引列计算一个哈希码(hash code),哈希码是一个较小的值,并且不同键值的行计算出来的哈希码也不一样。哈希索引将所有的哈希码存储在索引中,同时在哈希表中保存指向每个数据行的指针。
在MySQL中,只有Memory引擎显式支持哈希索引。这也是 Memory引擎表的默认索引类型,Memory引擎同时也支持B-Tree索引。值得一提的是,Memory引擎是支持非唯一哈希索引的,这在数据库世界里面是比较与众不同的。如果多个列的哈希值相同,索引会以链表的方式存放多个记录指针到同一个哈希条目中。
因为索引自身只需存储对应的哈希值,所以索引的结构十分紧凑,这也让哈希索引查找的速度非常快。然而,哈希索引也有它的限制:
- 哈希索引只包含哈希值和行指针,而不存储字段值,所以不能使用索引中的值来避免读取行。不过,访问内存中的行的速度很快,所以大部分情况下这一点对性能的影响并不明显。
- 哈希索引数据并不是按照索引值顺序存储的(而是按照哈希值排序),所以也就无法用于排序。
- 哈希索引也不支持部分索引列匹配查找,因为哈希索引始终是使用索引列的全部内容来计算哈希值的。例如,在数据列(A,B)上建立哈希索引,如果查询只有数据列A,则无法使用该索引。
- 哈希索引只支持等值比较查询,包括=、IN()、<=>(注意<>和<=>是不同的操作)。也不支持任何范围查询,例如 WHERE price > 100。
- 访问哈希索引的数据非常快,除非有很多哈希冲突(不同的索引列值却有相同的哈希值)。当出现哈希冲突的时候,存储引擎必须遍历链表中所有的行指针,逐行进行比较,直到找到所有符合条件的行。
- 如果哈希冲突很多的话,一些索引维护操作的代价也会很高。例如,如果在某个选择性很低(哈希冲突很多)的列上建立哈希索引,那么当从表中删除一行时,存储引擎需要遍历对应哈希值的链表中的每一行,找到并删除对应行的引用,冲突越多,代价越大。
因为这些限制,哈希索引只适用于某些特定的场合。而一旦适合哈希索引,则它带来的性能提升将非常显著。举个例子,在数据仓库应用中有一种经典的“星型”schema,需要关联很多查找表,哈希索引就非常适合查找表的需求。
InnoDB引擎有一个特殊的功能叫做“自适应哈希索引 (adaptive hash index)”。当InnoDB注意到某些索引值被使用得非常频繁时,它会在内存中基于B-Tree索引之上再创建一个哈希索引,这样就让B-Tree索引也具有哈希索引的一些优点,比如快速的哈希查找。这是一个完全自动的、内部的行为,用户无法控制或者配置,不过如果有必要,完全可以关闭该功能。
创建自定义哈希索引。如果存储引擎不支持哈希索引,则可以模拟像InnoDB一样创建哈希索引,这可以享受一些哈希索引的便利,例如只需要很小的索引就可以为超长的键创建索引。
思路很简单:在B-Tree基础上创建一个伪哈希索引。这和真正的哈希索引不是一回事,因为还是使用B-Tree进行查找,但是它使用哈希值而不是键本身进行索引查找。你需要做的就是在查询的wHERE子句中手动指定使用哈希函数。
例:
例如需要存储大量的URL,并需要根据URL进行搜索查找。如果使用B-Tree来存储URL,存储的内容就会很大,因为URL本身都很长。正常情况下会有如下查询:
mysql>SELECT id FROM ur1 WHERE url="http://www.mysql.com";
若删除原来URL列上的索引,而新增一个被索引的url_crc列,使用CRC32做哈希,就可以使用下面的方式查询:
这样做的性能会非常高,因为MySQL优化器会使用这个选择性很高而体积很小的基于url_crc列的索引来完成查找(在上面的案例中,索引值为1560514994)。即使有多个记录有相同的索引值,查找仍然很快,只需要根据哈希值做快速的整数比较就能找到索引条目,然后一一比较返回对应的行。另外一种方式就是对完整的URL字符串做索引,那样会非常慢。
这样实现的缺陷是需要维护哈希值。可以手动维护,也可以使用触发器实现。下面的案例演示了触发器如何在插入和更新时维护url_crc列:
如果采用这种方式,记住不要使用SHA1()和MD5()作为哈希函数。因为这两个函数计算出来的哈希值是非常长的字符串,会浪费大量空间,比较时也会更慢。SHA1()和MD5()是强加密函数,设计目标是最大限度消除冲突,但这里并不需要这样高的要求。简单哈希函数的冲突在一个可以接受的范围,同时又能够提供更好的性能。
如果数据表非常大,CRC32()会出现大量的哈希冲突,则可以考虑自己实现一个简单的64位哈希函数。这个自定义函数要返回整数,而不是字符串。一个简单的办法可以使用MD5()函数返回值的一部分来作为自定义哈希函数。这样实现最简单:
要避免冲突问题,必须在WHERE条件中带入哈希值和对应列值。如果不是想查询具体值,例如只是统计记录数(不精确的),则可以不带入列值,直接使用CRC32()的哈希值查询即可。还可以使用如FNV64()函数作为哈希函数,这是移植自Percona Server的函数,可以以插件的方式在任何MySQL版本中使用,哈希值为64位,速度快,且冲突比CRC32()要少很多。
索引的优点
最常见的B-Tree索引,按照顺序存储数据,所以MySQL可以用来做ORDER BY和GROUPBY操作。因为数据是有序的,所以B-Tree也就会将相关的列值都存储在一起。最后,因为索引中存储了实际的列值,所以某些查询只使用索引就能够完成全部查询。据此特性,总结下来索引有如下三个优点:
1.索引大大减少了服务器需要扫描的数据量。
2.索引可以帮助服务器避免排序和临时表。
3.索引可以将随机I/O变为顺序I/O。
为什么选B+树
哈希索引的缺点
缺点:
- 利用hash存储的话需要将所有的数据文件添加到内存,比较耗费内存空间
- 如果所有的查询都是等值查询,那么hash确实很快,但是在企业或者实际工作环境中范围查找的数据更多,而不是等值查询,因此hash就不太适合了
- 难以设定一个优秀的哈希函数,减少冲突
红黑树等其他树结构的缺点
可能会因为深度过深而导致I/O次数过多
B-树的缺点
B-树的节点(不论是叶节点还是分支节点)都存有数据,这会使得每个节点(可简单看成每次读取的硬盘块)存储的Key值较少,当数据量大时,需要做多次I/O
B+树的优点
B+树的分支节点只存储Key值,不存储其他数据,这会使得每个节点(可简单看成每次读取的硬盘块)存储的Key值较多,通过少量I/O操作就能检索到数据
且B+树叶子节点的数据,按索引排序,可以一次读取大量数据,很适合查找范围数据。
高性能的索引策略
独立的列
“独立的列”是指索引列不能是表达式的一部分,也不能是函数的参数。 我们通常会看到一些查询不当地使用索引,或者使得MySQL无法使用已有的索引。如果查询中的列不是独立的,则 MySQL就不会使用索引。
凭肉眼很容易看出 WHERE中的表达式其实等价于actor_id = 4,但是MySQL无法自动解析这个方程式。这完全是用户行为。我们应该养成简化WHERE条件的习惯,始终将索引列单独放在比较符号的一侧。
下面是另一个常见的错误:
前缀索引和索引选择性
如果要索引很大的字符串,一个选择是通常可以索引开始的部分字符,这样可以大大节约索引空间,从而提高索引效率。但这样也会降低索引的选择性。索引的选择性是指,不重复的索引值(也称为基数,cardinality)和数据表的记录总数(#T)的比值,范围从1/#T到1之间。索引的选择性越高则查询效率越高,因为选择性高的索引可以让MySQL在查找时过滤掉更多的行。唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。
所以最重要的在于要选择足够长的前缀以保证较高的选择性,同时又不能太长(以便节约空间)。前缀应该足够长,以使得前缀索引的选择性接近于索引整个列。换句话说,前缀的“基数”应该接近于完整列的“基数”。
这方面的例子见《高性能mysql》P190
下面演示如何创建前缀索引
前缀索引是一种能使索引更小、更快的有效办法,但另一方面也有其缺点:MySQL无法使用前缀索引做ORDER BY和GROUP BY,也无法使用前缀索引做覆盖扫描。
有时候后缀索引(suffix index)也有用途(例如,找到某个域名的所有电子邮件地址)。MySQL原生并不支持反向索引,但是可以把字符串反转后存储,并基于此建立前缀索引。可以通过触发器来维护这种索引。
多列索引
在多个列上建立独立的单列索引大部分情况下并不能提高MySQL的查询性能。5.0版本以前的MySQL只能使用其中某一个单列索引,这种情况下没有哪一个独立的单列索引是非常有效的。
MySQL5.0和更新版本引入了一种叫“索引合并”(index merge)的策略,一定程度上可以使用表上的多个单列索引来定位指定的行。在MySQL 5.0和更新的版本中,查询能够同时使用这两个单列索引进行扫描,并将结果进行合并。这种算法有三个变种:OR条件的联合(union),AND条件的相交( intersection),组合前两种情况的联合及相交。下面的查询就是使用了两个索引扫描的联合,通过EXPLAIN中的Extra列可以看到这点:
MySQL会使用这类技术优化复杂查询,所以在某些语句的Extra列中还可以看到嵌套操作。
索引合并策略有时候是一种优化的结果,但实际上更多时候说明了表上的索引建得很糟糕:
-
- 当出现服务器对多个索引做相交操作时(通常有多个AND条件),通常意味着需要一个包含所有相关列的多列索引,而不是多个独立的单列索引。
- 当服务器需要对多个索引做联合操作时(通常有多个OR条件),通常需要耗费大量CPU和内存资源在算法的缓存、排序和合并操作上。特别是当其中有些索引的选择性不高,需要合并扫描返回的大量数据的时候。
-
- 更重要的是,优化器不会把这些计算到“查询成本”(cost)中,优化器只关心随机页面读取。这会使得查询的成本被“低估”,导致该执行计划还不如直接走全表扫描。这样做不但会消耗更多的CPU和内存资源,还可能会影响查询的并发性,但如果是单独运行这样的查询则往往会忽略对并发性的影响。通常来说,还不如像在MySQL4.1或者更早的时代一样,将查询改写成UNION的方式往往更好。
如果在EXPLAIN中看到有索引合并,应该好好检查一下查询和表的结构,看是不是已经是最优的。也可以通过参数optimizer_switch来关闭索引合并功能。也可以使用IGNORE INDEX提示让优化器忽略掉某些索引。
选择合适的索引顺序(适用于B-TREE)
在一个多列B-Tree索引中,索引列的顺序意味着索引首先按照最左列进行排序,其次是第二列,等等。所以,索引可以按照升序或者降序进行扫描,以满足精确符合列顺序的ORDER BY、GROUP BY和 DISTINCT等子句的查询需求。
对于如何选择索引的列顺序有一个经验法则:将选择性最高的列放到索引最前列。这个建议有用吗?在某些场景可能有帮助,但通常不如避免随机IO和排序那么重要,考虑问题需要更全面(场景不同则选择不同,没有一个放之四海皆准的法则。这里只是说明,这个经验法则可能没有你想象的重要)。
当不需要考虑排序和分组时,将选择性最高的列放在前面通常是很好的。这时候索引的作用只是用于优化WHERE条件的查找。在这种情况下,这样设计的索引确实能够最快地过滤出需要的行,对于在WHERE子句中只使用了索引部分前缀列的查询来说选择性也更高。然而,性能不只是依赖于所有索引列的选择性(整体基数),也和查询条件的具体值有关,也就是和值的分布有关。这和前面介绍的选择前缀的长度需要考虑的地方一样。可能需要根据那些运行频率最高的查询来调整索引列的顺序,让这种情况下索引的选择性最高。
例:《高性能Mysql》P195
当使用前缀索引的时候,在某些条件值的基数比正常值高的时候,问题就来了。例如,在某些应用程序中,对于没有登录的用户,都将其用户名记录为“guset”,在记录用户行为的会话(session)表和其他记录用户活动的表中“guest”就成为了一个特殊用户ID。一旦查询涉及这个用户,那么和对于正常用户的查询就大不同了,因为通常有很多会话都是没有登录的。系统账号也会导致类似的问题。一个应用通常都有一个特殊的管理员账号,和普通账号不同,它并不是一个具体的用户,系统中所有的其他用户都是这个用户的好友,所以系统往往通过它向网站的所有用户发送状态通知和其他消息。这个账号的巨大的好友列表很容易导致网站出现服务器性能问题。
例:《高性能Mysql》 P197
聚簇索引
聚簇索引并不是一种单独的索引类型,而是一种数据存储方式。具体的细节依赖于其实现方式,但InnoDB的聚簇索引实际上在同一个结构中保存了B-Tree索引和数据行。
当表有聚簇索引时,它的数据行实际上存放在索引的叶子页(leaf page)中。术语“聚簇”表示数据行和相邻的键值紧凑地存储在一起。因为无法同时把数据行存放在两个不同的地方,所以一个表只能有一个聚簇索引(不过,覆盖索引可以模拟多个聚簇索引的情况,后面将详细介绍)。
一些数据库服务器允许选择哪个索引作为聚簇索引,但直到本书写作之际,还没有任何一个MySQL内建的存储引擎支持这一点。InnoDB将通过主键聚集数据,这也就是说图5-3中的“被索引的列”就是主键列。
如果没有定义主键,InnoDB会选择一个唯一的非空索引代替。如果没有这样的索引,InnoDB会隐式定义一个主键来作为聚簇索引。InnoDB只聚集在同一个页面中的记录。包含相邻键值的页面可能会相距甚远。
聚簇主键可能对性能有帮助,但也可能导致严重的性能问题。所以需要仔细地考虑聚簇索引,尤其是将表的存储引擎从InnoDB改成其他引擎的时候(反过来也一样)。
聚集的数据有一些重要的优点:
- 可以把相关数据保存在一起。例如实现电子邮箱时,可以根据用户ID来聚集数据,这样只需要从磁盘读取少数的数据页就能获取某个用户的全部邮件。如果没有使用聚簇索引,则每封邮件都可能导致一次磁盘I/O。
- 数据访问更快。聚簇索引将索引和数据保存在同一个 B-Tree中,因此从聚簇索引中获取数据通常比在非聚簇索引中查找要快。
- 使用覆盖索引扫描的查询可以直接使用页节点中的主键值。
如果在设计表和查询时能充分利用上面的优点,那就能极大地提升性能。同时,聚簇索引也有一些缺点:
- 聚簇数据最大限度地提高了I/O密集型应用的性能,但如果数据全部都放在内存中,则访问的顺序就没那么重要了,聚簇索引也就没什么优势了。
- 插人速度严重依赖于插入顺序。按照主键的顺序插入是加载数据到InnoDB表中速度最快的方式。但如果不是按照主键顺序加载数据,那么在加载完成后最好使用OPTIMIZETABLE命令重新组织一下表。
- 更新聚簇索引列的代价很高,因为会强制InnoDB将每个被更新的行移动到新的位置。
- 基于聚簇索引的表在插入新行,或者主键被更新导致需要移动行的时候,可能面临“页分裂(page split)”的问题。当行的主键值要求必须将这一行插入到某个已满的页中时,存储引擎会将该页分裂成两个页面来容纳该行,这就是一次页分裂操作。页分裂会导致表占用更多的磁盘空间。
- 聚簇索引可能导致全表扫描变慢,尤其是行比较稀疏,或者由于页分裂导致数据存储不连续的时候。
- 二级索引(非聚簇索引)可能比想象的要更大,因为在二级索引的叶子节点包含了引用行的主键列。
- 二级索引访问需要两次索引查找,而不是一次。
InnoDB和MyISAM数据分布对比
聚簇索引和非聚簇索引的数据分布有区别,以及对应的主键索引和二级索引的数据分布也有区别,通常会让人感到困扰和意外。来看看InnoDB和 MyISAM是如何存储下面这个表的:
CREATE TABLE layout_test (
col1 int NOTNULL,
col2 int NOT NULL,PRIMARY KEY(col1),KEY(col2)
);
假设该表的主键取值为1 ~ 10 000,按照随机顺序插入并使用OPTIMIZETABLE命令做了优化。换句话说,数据在磁盘上的存储方式已经最优,但行的顺序是随机的。列col2的值是从1~100之间随机赋值,所以有很多重复的值。
MyISAM
MyISAM按照数据插入顺序存储在磁盘上
在行的旁边显示了行号,从0开始递增。因为行是定长的,所以MyISAM可以从表的开头跳过所需的字节找到需要的行(MyISAM并不总是使用图5-4中的“行号”,而是根据定长还是变长的行使用不同策略)。
这种分布方式很容易创建索引。下面显示的一系列图,隐藏了页的物理细节,只显示索引中的“节点”,索引中的每个叶子节点包含“行号”。图5-5显示了表的主键。
那col2列上的索引又会如何呢?有什么特殊的吗?回答是否定的:它和其他索引没有什么区别。图5-6显示了col2列上的索引。
InnoDB
第一眼看上去,感觉该图和前面的图5-5没有什么不同,但再仔细看细节,会注意到该图显示了整个表,而不是只有索引。因为在InnoDB中,聚簇索引“就是”表,所以不像MyISAM那样需要独立的行存储。
聚簇索引的每一个叶子节点都包含了主键值、事务ID、用于事务和多版本控制的回滚指针以及所有的剩余列(在这个例子中是col2)。如果主键是一个列前缀索引,InnoDB也会包含完整的主键列和剩下的其他列。
还有一点和 MyISAM的不同是,InnoDB的二级索引和聚簇索引很不相同。InnoDB二级索引的叶子节点中存储的不是“行指针”,而是主键值,并以此作为指向行的“指针”。这样的策略减少了当出现行移动或者数据页分裂时二级索引的维护工作。使用主键值当作指针会让二级索引占用更多的空间,换来的好处是,InnoDB在移动行时无须更新二级索引中的这个“指针”。
图5-8显示了示例表的col2索引。每一个叶子节点都包含了索引列(这里是col2),紧接着是主键值(col1)。
图5-8展示了B-Tree的叶子节点结构,但我们故意省略了非叶子节点这样的细节。InnoDB的非叶子节点包含了索引列和一个指向下级节点的指针(下一级节点可以是非叶子节点,也可以是叶子节点)。这对聚簇索引和二级索引都适用。
在InnoDB中按主键插入行
如果正在使用InnoDB表并且没有什么数据需要聚集,那么可以定义一个代理键作为主键,这种主键的数据应该和应用无关,最简单的方法是使用AUTO_INCREIENT自增列。这样可以保证数据行是按顺序写入,对于根据主键做关联操作的性能也会更好。
最好避免随机的(不连续且值的分布范围非常大)聚簇索引,特别是对于I/О密集型的应用。例如,从性能的角度考虑,使用UUID来作为聚簇索引则会很糟糕:它使得聚簇索引的插入变得完全随机,这是最坏的情况,使得数据没有任何聚集特性。
举例《高性能Mysql》 P204
结论:
使用随机聚簇索引,由于新行的主键值不一定比之前插入的大,所以InnoDB无法简单地总是把新行插入到索引的最后,而是需要为新的行寻找合适的位置—通常是已有数据的中间位置——并且分配空间。这会增加很多的额外工作,并导致数据分布不够优化。下面是总结的一些缺点:
- 写入的目标页可能已经刷到磁盘上并从缓存中移除,或者是还没有被加载到缓存中,
- InnoDB在插入之前不得不先找到并从磁盘读取目标页到内存中。这将导致大量的随机IO。
- 因为写入是乱序的,InnoDB不得不频繁地做页分裂操作,以便为新的行分配空间。页分裂会导致移动大量数据,一次插入最少需要修改三个页而不是一个页。
- ·由于频繁的页分裂,页会变得稀疏并被不规则地填充,所以最终数据会有碎片。
- 在把这些随机值载入到聚簇索引以后,也许需要做一次OPTIMIZE TABLE来重建表并优化页的填充。
从这个案例可以看出,使用InnoDB时应该尽可能地按主键顺序插入数据,并且尽可能地使用单调增加的聚簇键的值来插入新行。
覆盖索引
如果一个索引包含(或者说覆盖)所有需要查询的字段的值,我们就称之为“覆盖索引”。
覆盖索引是非常有用的工具,能够极大地提高性能。考虑一下如果查询只需要扫描索引而无须回表,会带来多少好处:
-
- 索引条目通常远小于数据行大小,所以如果只需要读取索引,那 MySQL就会极大地减少数据访问量。这对缓存的负载非常重要,因为这种情况下响应时间大部分花费在数据拷贝上。覆盖索引对于I/O密集型的应用也有帮助,因为索引比数据更小,更容易全部放入内存中(这对于MyISAM尤其正确,因为MyISAM能压缩索引以变得更小)。
- 因为索引是按照列值顺序存储的(至少在单个页内是如此),所以对于I/O密集型的范围查询会比随机从磁盘读取每一行数据的I/O要少得多。对于某些存储引擎,例如 MyISAM和Percona XtraDB,甚至可以通过OPTIMIZE命令使得索引完全顺序排列,这让简单的范围查询能使用完全顺序的索引访问。
-
- 一些存储引擎如MyISAM在内存中只缓存索引,数据则依赖于操作系统来缓存,因此要访问数据需要一次系统调用。这可能会导致严重的性能问题,尤其是那些系统调用占了数据访问中的最大开销的场景。
- 由于InnoDB的聚簇索引,覆盖索引对InnoDB表特别有用。InnoDB的二级索引在叶子节点中保存了行的主键值,所以如果二级主键能够覆盖查询,则可以避免对主键索引的二次查询。
不是所有类型的索引都可以成为覆盖索引。覆盖索引必须要存储索引列的值,而哈希索引、空间索引和全文索引等都不存储索引列的值,所以MySQL只能使用B-Tree索引做覆盖索引。另外,不同的存储引擎实现覆盖索引的方式也不同,而且不是所有的引擎都支持覆盖索引。
当发起一个被索引覆盖的查询(也叫做索引覆盖查询)时,在 EXPLAIN的Extra列可以看到“Using index”的信息。例如,表sakila.inventory有一个多列索引(store_id,film_id)。MySQL 如果只需访问这两列,就可以使用这个索引做覆盖索引,如下所示:
\
索引覆盖查询还有很多陷阱可能会导致无法实现优化。MySQL查询优化器会在执行查询前判断是否有一个索引能进行覆盖 。假设索引覆盖了WHERE条件中的字段,但不是整个查询涉及的字段。如果条件为假(false),MySQL 5.5和更早的版本也总是会回表获取数据行, 尽管并不需要这一行且最终会被过滤掉。
例如:
这里索引无法覆盖该查询,有两个原因:
- 没有任何索引能够覆盖这个查询。因为查询从表中选择了所有的列,而没有任何索引覆盖了所有的列。不过,理论上MySQL还有一个捷径可以利用:WHERE条件中的列是有索引可以覆盖的,因此MySQL可以使用该索引找到对应的actor并检查title是否匹配,过滤之后再读取需要的数据行。
- MySQL不能在索引中执行LIKE操作。这是底层存储引擎API的限制,MySQL 5.5和更早的版本中只允许在索引中做简单比较操作(例如等于、不等于以及大于)。MySQL能在索引中做最左前缀匹配的LIKE比较,因为该操作可以转换为简单的比较操作,但是如果是通配符开头的LIKE查询,存储引擎就无法做比较匹配。这种情况下,MySQL服务器只能提取数据行的值而不是索引值来做比较。
也有办法可以解决上面说的两个问题,需要重写查询并巧妙地设计索引。先将索引扩展至覆盖三个数据列(artist, title, prod_id),然后按如下方式重写查询:
我们把这种方式叫做延迟关联(deferred join),因为延迟了对列的访问。在查询的第一阶段MySQL可以使用覆盖索引,在FROM子句的子查询中找到匹配的prod_id,然后根据这些prod_id值在外层查询匹配获取需要的所有列值。虽然无法使用索引覆盖整个查询,但总算比完全无法利用索引覆盖的好。
举例:
\
\
在大多数存储引擎中,覆盖索引只能覆盖那些只访问索引中部分列的查询。不过,可以更进一步优化InnoDB。回想一下,InnoDB的二级索引的叶子节点都包含了主键的值,这意味着InnoDB 的二级索引可以有效地利用这些“额外”的主键列来覆盖查询。
例如,sakila.actor使用InnoDB存储引擎,并在last_name字段有二级索引,虽然该索引的列不包括主键actor_id,但也能够用于对actor_id做覆盖查询:
索引下推
select * from table where name=? and age=?
没有索引下推的步骤
先从存储引擎中拉取数据(根据name筛选的数据),再于mysgl server 根据age进行数据的筛选
有索引下推:
会在拉取数据的时候直接根据name, age来获取数据,不需要server做任何的数据筛选
Multi_Range_Read
简而言之,对于二级索引,从二级索引取得主键结果集后,对结果集进行z排序(按主键排),再根据排序后的结果集从聚簇索引中读
使用索引扫描来做排序
MySQL有两种方式可以生成有序的结果:通过排序操作;或者按索引顺序扫描;如果EXPLAIN出来的type列的值为“index”,则说明MySQL使用了索引扫描来做排序(不要和 Extra列的“Using index”搞混淆了)。
扫描索引本身是很快的,因为只需要从一条索引记录移动到紧接着的下一条记录。但如果索引不能覆盖查询所需的全部列,那就不得不每扫描一条索引记录就都回表查询一次对应的行。这基本上都是随机I/O,因此按索引顺序读取数据的速度通常要比顺序地全表扫描慢,尤其是在IO密集型的工作负载时。
MySQL可以使用同一个索引既满足排序,又用于查找行。因此,如果可能,设计索引时应该尽可能地同时满足这两种任务,这样是最好的。
只有当索引的列顺序和ORDER BY子句的顺序完全一致,并且所有列的排序方向(倒序或正序)都一样时,MySQL才能够使用索引来对结果做排序。如果查询需要关联多张表,则只有当ORDER BY子句引用的字段全部为第一个表时,才能使用索引做排序。 ORDER BY子句和查找型查询的限制是一样的:需要满足索引的最左前缀的要求(即ORDER BY子句的条件的前导列为索引最左列?)﹔否则,MySQL都需要执行排序操作,而无法利用索引排序。
有一种情况下ORDER BY子句可以不满足索引的最左前缀的要求,就是前导列为常量的时候。如果WHERE子句或者JOIN子句中对这些列指定了常量,就可以“弥补”索引的不足。
举例:
\
还有更多可以使用索引做排序的查询示例。
下面这个查询可以利用索引排序,是因为查询为索引的第一列提供了常量条件,而使用第二列进行排序,将两列组合在一起,就形成了索引的最左前缀:
WHERE rental_date = '2005-05-25’ORDER BY inventory_id DESC;
下面这个查询也没问题,因为ORDERBY使用的两列就是索引的最左前缀:
WHERE rental_date > '2005-05-25’ORDER BY rental_date,inventory_id;
\
前缀压缩索引
MyISAM使用前缀压缩来减少索引的大小,从而让更多的索引可以放入内存中,这在某些情况下能极大地提高性能。默认只压缩字符串,但通过参数设置也可以对整数做压缩。
MyISAM压缩每个索引块的方法是,先完全保存索引块中的第一个值,然后将其他值和第一个值进行比较得到相同前缀的字节数和剩余的不同后缀部分,把这部分存储起来即可。例如,索引块中的第一个值是“perform”,第二个值是“performance”,那么第二个值的前缀压缩后存储的是类似“7,ance”这样的形式。MyISAM对行指针也采用类似的前缀压缩方式。
压缩块使用更少的空间,代价是某些操作可能更慢。因为每个值的压缩前缀都依赖前面的值,所以MyISAM查找时无法在索引块使用二分查找而只能从头开始扫描。正序的扫描速度还不错,但是如果是倒序扫描——例如ORDER BY DESC——就不是很好了。所有在块中查找某一行的操作平均都需要扫描半个索引块。
测试表明,对于CPU密集型应用,因为扫描需要随机查找,压缩索引使得MyISAM在索引查找上要慢好几倍。压缩索引的倒序扫描就更慢了。压缩索引需要在CPU内存资源与磁盘之间做权衡。压缩索引可能只需要十分之一大小的磁盘空间,如果是I/O密集型应用,对某些查询带来的好处会比成本多很多。
可以在 CREATE TABLE语句中指定PACK_KEYS参数来控制索引压缩的方式。
冗余和重复索引
MySQL允许在相同列上创建多个索引,无论是有意的还是无意的。MySQL需要单独维护重复的索引,并且优化器在优化查询的时候也需要逐个地进行考虑,这会影响性能。
重复索引是指在相同的列上按照相同的顺序创建的相同类型的索引。应该避免这样创建重复索引,发现以后也应该立即移除。
举例:
冗余索引和重复索引有一些不同。如果创建了索引(A, B),再创建索引(A)就是冗余索引,因为这只是前一个索引的前缀索引。因此索引(AB)也可以当作索引(A)来使用(这种冗余只是对B-Tree索引来说的)。但是如果再创建索引 (B,A),则不是冗余索引,索引(B)也不是,因为B不是索引(A,B)的最左前缀列。另外,其他不同类型的索引(例如哈希索引或者全文索引)也不会是B-Tree索引的冗余索引,而无论覆盖的索引列是什么。
冗余索引通常发生在为表添加新索引的时候。例如,有人可能会增加一个新的索引(A,B)而不是扩展已有的索引(A)。还有一种情况是将一个索引扩展为(A,ID),其中ID是主键,对于InnoDB来说主键列已经包含在二级索引中了,所以这也是冗余的。
大多数情况下都不需要冗余索引,应该尽量扩展已有的索引而不是创建新索引。但也有时候出于性能方面的考虑需要冗余索引,因为扩展已有的索引会导致其变得太大,从而影响其他使用该索引的查询的性能。
例如,如果在整数列上有一个索引,现在需要额外增加一个很长的VARCHAR列来扩展该索引,那性能可能会急剧下降。特别是有查询把这个索引当作覆盖索引,或者这是MyISAM表并且有很多范围查询(由于MyISAM的前缀压缩)的时候。但注意:索引变多,插入数据所需成本更高
举例:《高性能MySQL》P216
索引和锁
索引可以让查询锁定更少的行。如果你的查询从不访问那些不需要的行,那么就会锁定更少的行,从两个方面来看这对性能都有好处。首先,虽然InnoDB的行锁效率很高,内存使用也很少,但是锁定行的时候仍然会带来额外开销﹔其次,锁定超过需要的行会增加锁争用并减少并发性。
InnoDB只有在访问行的时候才会对其加锁,而索引能够减少InnoDB访问的行数,从而减少锁的数量。但这只有当InnoDB在存储引擎层能够过滤掉所有不需要的行时才有效。如果索引无法过滤掉无效的行,那么在InnoDB检索到数据并返回给服务器层以后,MySQL服务器才能应用WHERE子句。这时已经无法避免锁定行了:InnoDB已经锁住了这些行,到适当的时候才释放。在MySQL 5.1和更新的版本中,InnoDB可以在服务器端过滤掉行后就释放锁,但是在早期的MySQL版本中,InnoDB 只有在事务提交后才能释放锁。
举例:《高性能MySQL》P217
关于InnoDB、索引和锁有一些很少有人知道的细节:InnoDB在二级索引上使用共享(读)锁,但访问主键索引需要排他(写)锁。这消除了使用覆盖索引的可能性,并且使得SELECT FOR UPDATE比LOCK IN SHARE MODE或非锁定查询要慢很多。
维护和索引表
即使用正确的类型创建了表并加上了合适的索引,工作也没有结束:还需要维护表和索引来确保它们都正常工作。维护表有三个主要的目的:找到并修复损坏的表,维护准确的索引统计信息,减少碎片。
找到损坏的表
表损坏(corruption)是很糟糕的事情。对于MyISAM存储引擎,表损坏通常是系统崩溃导致的。其他的引擎也会由于硬件问题、MySQL本身的缺陷或者操作系统的问题导致索引损坏。
损坏的索引会导致查询返回错误的结果或者莫须有的主键冲突等问题,严重时甚至还会导致数据库的崩溃。如果你遇到了古怪的问题——例如一些不应该发生的错误——可以尝试运行CHECK TABLE来检查是否发生了表损坏(注意有些存储引擎不支持该命令;而有些引擎则支持以不同的选项来控制完全检查表的方式)。CHECK TABLE通常能够找出大多数的表和索引的错误。
可以使用REPAIR TABLE命令来修复损坏的表,但同样不是所有的存储引擎都支持该命令。如果存储引擎不支持,也可通过一个不做任何操作(no-op)的ALTER操作来重建表,例如修改表的存储引擎为当前的引擎。下面是一个针对InnoDB表的例子: mysql> ALTER TABLE innodb_tb1 ENGINE=INNODB;
此外,也可以使用一些存储引擎相关的离线工具,例如myisamchky或者将数据导出一份,然后再重新导入。不过,如果损坏的是系统区域,或者是表的“行数据”区域,而不是索引,那么上面的办法就没有用了。在这种情况下,可以从备份中恢复表,或者尝试从损坏的数据文件中尽可能地恢复数据。
如果InnoDB引擎的表出现了损坏,那么一定是发生了严重的错误,需要立刻调查一下原因。InnoDB一般不会出现损坏。InnoDB的设计保证了它并不容易被损坏。如果发生损坏,一般要么是数据库的硬件问题例如内存或者磁盘问题(有可能),要么是由于数据库管理员的错误例如在MySQL外部操作了数据文件(有可能),抑或是InnoDB本身的缺陷(不太可能)。常见的类似错误通常是由于尝试使用rsync备份InnoDB导致的。不存在什么查询能够让InnoDB表损坏,也不用担心暗处有“陷阱”。如果某条查询导致InnoDB 数据的损坏,那一定是遇到了bug,而不是查询的问题。
如果遇到数据损坏,最重要的是找出是什么导致了损坏,而不只是简单地修复,否则很有可能还会不断地损坏。可以通过设置innodb_force_recovery参数进入InnoDB 的强制恢复模式来修复数据,更多细节可以参考MySQL手册。另外,还可以使用开源的InnoDB数据恢复工具箱(InnoDB Data Recovery Toolkit)直接从InnoDB数据文件恢复出数据(下载地址: http.:!/www.percona.com/software/my…
减少索引和数据的碎片
B-Tree索引可能会碎片化,这会降低查询的效率。碎片化的索引可能会以很差或者无序的方式存储在磁盘上。
根据设计,B-Tree需要随机磁盘访问才能定位到叶子页,所以随机访问是不可避免的。然而,如果叶子页在物理分布上是顺序且紧密的,那么查询的性能就会更好。否则,对于范围查询、索引覆盖扫描等操作来说,速度可能会降低很多倍﹔对于索引覆盖扫描这一点更加明显。
表的数据存储也可能碎片化。然而,数据存储的碎片化比索引更加复杂。有三种类型的数据碎片。
行碎片(Row fragmentation)
这种碎片指的是数据行被存储为多个地方的多个片段中。即使查询只从索引中访问一行记录,行碎片也会导致性能下降。
行间碎片(Intra-row fragmentation)
行间碎片是指逻辑上顺序的页,或者行在磁盘上不是顺序存储的。行间碎片对诸如全表扫描和聚簇索引扫描之类的操作有很大的影响,因为这些操作原本能够从磁盘上顺序存储的数据中获益。
剩余空间碎片(Free space fragmentation)
剩余空间碎片是指数据页中有大量的空余空间。这会导致服务器读取大量不需要的数据,从而造成浪费。
对于MyISAM表,这三类碎片化都可能发生。但InnoDB不会出现短小的行碎片﹔InnoDB会移动短小的行并重写到一个片段中。
可以通过执行OPTIMIZE TABLE或者导出再导入的方式来重新整理数据。这对多数存储引擎都是有效的。对于一些存储引擎如 MyISAM,可以通过排序算法重建索引的方式来消除碎片。老版本的InnoDB没有什么消除碎片化的方法。不过最新版本InnoDB新增了“在线”添加和删除索引的功能,可以通过先删除,然后再重新创建索引的方式来消除索引的碎片化。
对于那些不支持OPTIMIZE TABLE的存储引擎,可以通过一个不做任何操作(no-op)的ALTER TABLE 操作来重建表。只需要将表的存储引擎修改为当前的引擎即可:mysql> ALTER TABLE <table> ENGINE=<engine>;
对于开启了expand_fast_index_creation参数的Percona Server,按这种方式重建表,则会同时消除表和索引的碎片化。但对于标准版本的MySQL则只会消除表(实际上是聚簇索引)的碎片化。可用先删除所有索引,然后重建表,最后重新创建索引的方式模拟Percona Server的这个功能。
索引优化
索引的优化
1、建立索引加快查询性能,优先在经常搜索的字段上建立索引(where);WHERE子句的查询条件里使用了比较操作符LIKE前置通配符%(如:LIKE "%ABC"),因为‘%’代表任何字符,%xxx不知道怎么去索引的,所以使用不了索引。只要列中包含有NULL值都将不会被包含在索引中
2、应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
UNION 操作符用于合并两个或多个 SELECT 语句的结果集。请注意,UNION 内部的 SELECT 语句必须拥有相同数量的列。列也必须拥有相似的数据类型。不是同一个表也可以union只要列数相同,UNION 结果集中的列名总是等于 UNION 中第一个 SELECT 语句中的列名。UNION ALL允许重复
3、in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
4、有函数的参数,不使用索引
select * from user where age + 1 =20;
5、应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描
6、在多个列上建立独立的单列索引大部分情况下不能提高查询性能,可以使用复合索引(多列索引),key(name,age,sex)
多列索引有一个特点,即最左前缀(Leftmost Prefixing)。假如有一个多列索引为key(firstname lastname age),当搜索条件是以下各种列的组合和顺序时,MySQL将使用该多列索引:
firstname,lastname,age
firstname,lastname
firstname
也就是说,相当于还建立了key(firstname lastname)和key(firstname)。但是只搜lastname用不到索引
7、由于复合索引最左前缀匹配,将搜索次数多的列放到最前列(建立B+树时从最左字段开始排序,第一个字段相同才排第二个字段,因为查找树需要一定的顺序)
8、尽量选择小而简单的数据类型做索引,减少磁盘空间
9、有时候需要索引很长的字符列,这会让索引变得大且慢。一个方式是使用哈希索引,另一个是使用前缀索引,即索引开始的部分字符串,这样可以节约索引空间,提高效率。但这样会降低索引的选择性(不重复的索引值/记录总数)。索引的选择性越高则查询效率越高,唯一索引的选择性是1,性能是最好的。一般情况,某个前缀的选择性也是足够高的。