Mutex 几种状态
- mutexLocked — 表示互斥锁的锁定状态;
- mutexWoken — 表示从正常模式被从唤醒;
- mutexStarving — 当前的互斥锁进入饥饿状态;
- waitersCount — 当前互斥锁上等待的 Goroutine 个数;
Mutex 正常模式和饥饿模式
正常模式(非公平锁)
正常模式下,所有等待锁的 goroutine 按照 FIFO(先进先出)顺序等待。唤醒的 goroutine 不会直接拥有锁,而是会和新请求 goroutine 竞争锁。新请求的goroutine 更容易抢占:因为它正在 CPU 上执行,所以刚刚唤醒的 goroutine有很大可能在锁竞争中失败。在这种情况下,这个被唤醒的 goroutine 会加入到等待队列的前面。
饥饿模式(公平锁)
为了解决了等待 goroutine 队列的长尾问题 饥饿模式下,直接由 unlock 把锁交给等待队列中排在第一位的 goroutine (队头),同时,饥饿模式下,新进来的goroutine 不会参与抢锁也不会进入自旋状态,会直接进入等待队列的尾部。这样很好的解决了老的 goroutine 一直抢不到锁的场景。
饥饿模式的触发条件:当一个 goroutine 等待锁时间超过 1 毫秒时,或者当前队列只剩下一个 goroutine 的时候,Mutex 切换到饥饿模式。
总结
对于两种模式,正常模式下的性能是最好的,goroutine 可以连续多次获取锁,饥饿模式解决了取锁公平的问题,但是性能会下降,这其实是性能和公平的一个平衡模式。
Mutex 允许自旋的条件
- 锁已被占用,并且锁不处于饥饿模式
- 积累的自旋次数小于最大自旋次数(active_spin=4)
- CPU 核数大于 1
- 有空闲的 P
- 当前 Goroutine 所挂载的 P 下,本地待运行队列为空
RWMutex 实现
通过记录 readerCount 读锁的数量来进行控制,当有一个写锁的时候,会将读锁数量设置为负数 1<<30。目的是让新进入的读锁等待之前的写锁释放通知读锁。同样的当有写锁进行抢占时,也会等待之前的读锁都释放完毕,才会开始进行后续的操作。 而等写锁释放完之后,会将值重新加上 1<<30, 并通知刚才新进入的读锁(rw.readerSem),两者互相限制
RWMutex 注意事项
-
RWMutex 是单写多读锁,该锁可以加多个读锁或者一个写锁
-
读锁占用的情况下会阻止写,不会阻止读,多个 Goroutine 可以同时获取读锁
-
写锁会阻止其他 Goroutine(无论读和写)进来,整个锁由该 Goroutine独占
-
适用于读多写少的场景
-
RWMutex 类型变量的零值是一个未锁定状态的互斥锁
-
RWMutex 在首次被使用之后就不能再被拷贝
-
RWMutex 的读锁或写锁在未锁定状态,解锁操作都会引发 panic
-
RWMutex 的一个写锁去锁定临界区的共享资源,如果临界区的共享资源已被(读锁或写锁)锁定,这个写锁操作的 goroutine 将被阻塞直到解锁
-
RWMutex 的读锁不要用于递归调用,比较容易产生死锁
-
RWMutex 的锁定状态与特定的 goroutine 没有关联。一个 goroutine 可以 RLock(Lock),另一个 goroutine 可以 RUnlock(Unlock)
-
写锁被解锁后,所有因操作锁定读锁而被阻塞的 goroutine 会被唤醒,并都可以成功锁定读锁
-
读锁被解锁后,在没有被其他读锁锁定的前提下,所有因操作锁定写锁而被阻塞的 Goroutine,其中等待时间最长的一个 Goroutine 会被唤醒
Cond 是什么
Cond 实现了一种条件变量,可以使用在多个 Reader 等待共享资源 ready 的场景(如果只有一读一写,一个锁或者 channel 就搞定了)
每个 Cond 都会关联一个 Lock(*sync.Mutex or *sync.RWMutex),当修改条件或者调用 Wait 方法时,必须加锁,保护 condition。
Broadcast 和 Signal 区别
func (c *Cond) Broadcast()
Broadcast 会唤醒所有等待 c 的 goroutine。
调用 Broadcast 的时候,可以加锁,也可以不加锁。
func (c *Cond) Signal()
Signal 只唤醒 1 个等待 c 的 goroutine。
调用 Signal 的时候,可以加锁,也可以不加锁。
Cond 中 Wait 使用
func (c *Cond) Wait()
Wait()会自动释放 c.L 锁,并挂起调用者的 goroutine。之后恢复执行,Wait()会在返回时对 c.L 加锁。
除非被 Signal 或者 Broadcast 唤醒,否则 Wait()不会返回。
由于 Wait()第一次恢复时,C.L 并没有加锁,所以当 Wait 返回时,调用者通常并不能假设条件为真。如下代码:。
取而代之的是, 调用者应该在循环中调用 Wait。(简单来说,只要想使用condition,就必须加锁。)
c.L.Lock()
for !condition() {
c.Wait()
}
... make use of condition ...
c.L.Unlock()
WaitGroup 用法
一个 WaitGroup 对象可以等待一组协程结束。使用方法是:
-
main 协程通过调用 wg.Add(delta int) 设置 worker 协程的个数,然后创建 worker 协程;
-
worker 协程执行结束以后,都要调用 wg.Done()
-
main 协程调用 wg.Wait() 且被 block,直到所有 worker 协程全部执行结束后返回。
WaitGroup 实现原理
-
WaitGroup 主要维护了 2 个计数器,一个是请求计数器 v,一个是等待计数器 w,二者组成一个 64bit 的值,请求计数器占高 32bit,等待计数器占低32bit。
-
每次 Add 执行,请求计数器 v 加 1,Done 方法执行,等待计数器减 1,v 为0 时通过信号量唤醒 Wait()
什么是 sync.Once
-
Once 可以用来执行且仅仅执行一次动作,常常用于单例对象的初始化场景。
-
Once 常常用来初始化单例资源,或者并发访问只需初始化一次的共享资源,或者在测试的时候初始化一次测试资源。
-
sync.Once 只暴露了一个方法 Do,你可以多次调用 Do 方法,但是只有第一次调用 Do 方法时 f 参数才会执行,这里的 f 是一个无参数无返回值的函数。
什么操作叫做原子操作
原子操作即是进行过程中不能被中断的操作,针对某个值的原子操作在被进行的过程中,CPU 绝不会再去进行其他的针对该值的操作。为了实现这样的严谨性,原子操作仅会由一个独立的 CPU 指令代表和完成。原子操作是无锁的,常常直接通过 CPU 指令直接实现。 事实上,其它同步技术的实现常常依赖于原子操作
原子操作和锁的区别
-
原子操作由底层硬件支持,而锁则由操作系统的调度器实现。
-
锁应当用来保护一段逻辑,对于一个变量更新的保护。
-
原子操作通常执行上会更有效率,并且更能利用计算机多核的优势,如果要更新的是一个复合对象,则应当使用 atomic.Value 封装好的实现。
什么是 CAS
CAS 的全称为 Compare And Swap,直译就是比较交换。是一条 CPU 的原子指令,其作用是让 CPU 先进行比较两个值是否相等,然后原子地更新某个位置的值,其实现方式是给予硬件平台的汇编指令,在 intel 的 CPU 中,使用的cmpxchg 指令,就是说 CAS 是靠硬件实现的,从而在硬件层面提升效率。
简述过程是这样:
假设包含 3 个参数内存位置(V)、预期原值(A)和新值(B)。V 表示要更新变量的值,E 表示预期值,N 表示新值。仅当 V 值等于 E 值时,才会将 V 的值设为 N,如果 V 值和 E 值不同,则说明已经有其他线程在做更新,则当前线程什么都不做,最后 CAS 返回当前 V 的真实值。CAS 操作时抱着乐观的态度进行的,它总是认为自己可以成功完成操作。基于这样的原理,CAS 操作即使没有锁,也可以发现其他线程对于当前线程的干扰。
sync.Pool 有什么用
对于很多需要重复分配、回收内存的地方,sync.Pool 是一个很好的选择。频繁地分配、回收内存会给 GC 带来一定的负担,严重的时候会引起 CPU 的毛刺。而 sync.Pool 可以将暂时将不用的对象缓存起来,待下次需要的时候直接使用,不用再次经过内存分配,复用对象的内存,减轻 GC 的压力,提升系统的性能。