笔者把java生态分为多个模块,本篇讲解jvm模块的垃圾回收机制,学习jvm,对垃圾回收机制必须了如指掌,才能对jvm的调优有深入的见解。
我们知道java开发语言相对于c++开发语言最大的一个特点就是垃圾自动回收机制,开发者不需要再去关注内存的回收问题,使得开发者只需要专注于业务逻辑的开发即可。
因为市场上Hotspot虚拟机应用最多,所以接下来我们以Hotspot虚拟机开发者的角度来探讨垃圾收集器应该如何来设计。
java虚拟机规范中明确指出jvm的的内存结构中的堆区应该存储被自动内存管理系统(也即是常说的“垃圾收集器”)所管理的各种对象,也就是说java虚拟机规范要求各个虚拟机设计者们必须为堆区实现垃圾回收机制,但是对具体的实现细节并未做太多要求。
1分代理论思想
我们现在知道垃圾收集器回收的主要区域是堆,目标是堆内的对象,那么如何设计垃圾收集器呢?
既然回收的目标是对象,那作为开发者在设计的时候首先就是要先了解这些对象,在此过程中,开发者们得出一套符合大多数程序运行实际情况的经验法则,并最终总结为两个假说:
- 弱分代假说:绝大多数对象都是朝生夕灭的。
- 强分代假说:熬过越多次垃圾收集过程的对象就越难以消亡。
这两个解说的指导意义在于:
如果一个区域中大多数对象都是朝生夕灭,难以熬过垃圾收集过程的话,那么把它们集中放在一起,每次回收时只关注如何保留少量存活而不是去标记那些大量将要被回收的对象,就能以较低代价回收到大量的空间;
如果剩下的都是难以消亡的对象,那把它们集中放在一块,虚拟机便可以使用较低的频率来回收这个区域,这就同时兼顾了垃圾收集的时间开销和内存的空间有效利用。
这便是影响深远的分代理论思想。
2堆区划分
在分代理论思想的指导下,我们知道对于寿命长的对象和寿命短的对象回收的策略应该是不一致的,在这里再次探讨下,大多数的对象都是寿命短的,小的;少量的对象是寿命长的,大的。那就会造成大多数的对象短时间内需要回收掉,总有那么一部分对象是垃圾收集器长时间内回收不到的。那么既然回收不到,就没必要每次回收都要去操作一遍全部的对象,由此我们得出针对这两种对象的回收策略和频率也必然是不同的。开发者就必须要考虑将两种对象分开来存放,因此Hotspot虚拟机在实现垃圾收集器的时候把堆区分为老年代和新生代。这里特别需要注意的是java虚拟机规范要求运行时数据区划分为堆,方法区,虚拟机栈,本地方法栈,程序计数器,但是并未要求堆区内部要划分为老年代和新生代,这些只是Hotspot虚拟机在实现垃圾收集机制过程的逻辑产物。
3垃圾标记算法
现在我们知道垃圾收集器收集的主要区域是堆,收集目标是对象,堆区分为新生代和老年代,那么不管是新生代还是老年代,如何才能知道哪些对象是应该被回收的呢?即如何找到可回收对象。jvm主要是通过引用技术算法和可达性分析算法来进行判断对象是否为垃圾对象。
引用技术算法
在对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加一;当引用失效时,计数器值就减一;任何时刻计数器为零的对象就是不可能再被使用的。
客观地说,引用计数算法虽然占用了一些额外的内存空间来进行计数,但它的原理简单,判定效率也很高,在大多数情况下它都是一个不错的算法。也有一些比较著名的应用案例,但是,在Java领域,至少主流的Java虚拟机里面都没有选用引用计数算法来管理内存,主要原因是,这个看似简单的算法有很多例外情况要考虑,必须要配合大量额外处理才能保证正确地工作,譬如单纯的引用计数就很难解决对象之间相互循环引用的问题。
可达性分析算法
这个算法的基本思路就是通过一系列称为“GC Roots”的根对象作为起始节点集,从这些节点开始,根据引用关系向下搜索,搜索过程所走过的路径称为“引用链”,如果某个对象到GC Roots间没有任何引用链相连,或者说从GC Roots到这个对象不可达时,则证明此对象是不可能再被使用的。
此算法中重要的两个概念就是“GC root”和“引用链”
GC root指的什么
在Java技术体系里面,固定可作为GC Roots的对象包括以下几种:
- 在虚拟机栈(栈帧中的本地变量表)中引用的对象,譬如各个线程被调用的方法堆栈中使用到的参数、局部变量、临时变量等。
- 在方法区中类静态属性引用的对象,譬如Java类的引用类型静态变量。·在方法区中常量引用的对象,譬如字符串常量池(String Table)里的引用。·在本地方法栈中JNI(即通常所说的Native方法)引用的对象。
- Java虚拟机内部的引用,如基本数据类型对应的Class对象,一些常驻的异常对象(比如NullPointExcepiton、OutOfMemoryError)等,还有系统类加载器。
- 所有被同步锁(synchronized关键字)持有的对象。·反映Java虚拟机内部情况的JMXBean、JVMTI中注册的回调、本地代码缓存等。
引用链是什么
无论是通过引用计数算法判断对象的引用数量,还是通过可达性分析算法判断对象是否引用链可达,判定对象是否存活都和“引用”离不开关系。在JDK 1.2版之前,Java里面的引用是很传统的定义:如果reference类型的数据中存储的数值代表的是另外一块内存的起始地址,就称该reference数据是代表某块内存、某个对象的引用。这种定义并没有什么不对,只是现在看来有些过于狭隘了,一个对象在这种定义下只有“被引用”或者“未被引用”两种状态,对于描述一些“食之无味,弃之可惜”的对象就显得无能为力。譬如我们希望能描述一类对象:当内存空间还足够时,能保留在内存之中,如果内存空间在进行垃圾收集后仍然非常紧张,那就可以抛弃这些对象——很多系统的缓存功能都符合这样的应用场景。
在JDK 1.2版之后,Java对引用的概念进行了扩充,将引用分为强引用(Strongly Re-ference)、软引用(Soft Reference)、弱引用(Weak Reference)和虚引用(Phantom Reference)4种,这4种引用强度依次逐渐减弱。
- 强引用是最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“Objectobj=new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。
- 软引用是用来描述一些还有用,但非必须的对象。只被软引用关联着的对象,在系统将要发生内存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存,才会抛出内存溢出异常。在JDK 1.2版之后提供了SoftReference类来实现软引用。
- 弱引用也是用来描述那些非必须对象,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生为止。当垃圾收集器开始工作,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK 1.2版之后提供了WeakReference类来实现弱引用。
- 虚引用也称为“幽灵引用”或者“幻影引用”,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的只是为了能在这个对象被收集器回收时收到一个系统通知。在JDK 1.2版之后提供了PhantomReference类来实现虚引用。
对象死亡逃脱
即使在可达性分析算法中判定为不可达的对象,也不是“非死不可”的,这时候它们暂时还处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行可达性分析后发现没有与GC Root相连接的引用链,那它将会被第一次标记,随后进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。假如对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过,那么虚拟机将这两种情况都视为“没有必要执行”。如果这个对象被判定为确有必要执行finalize()方法,那么该对象将会被放置在一个名为F-Queue的队列之中,并在稍后由一条由虚拟机自动建立的、低调度优先级的Finalizer线程去执行它们的finalize()方法。这里所说的“执行”是指虚拟机会触发这个方法开始运行,但并不承诺一定会等待它运行结束。这样做的原因是,如果某个对象的finalize()方法执行缓慢,或者更极端地发生了死循环,将很可能导致F-Queue队列中的其他对象永久处于等待,甚至导致整个内存回收子系统的崩溃。finalize()方法是对象逃脱死亡命运的最后一次机会,稍后收集器将对F-Queue中的对象进行第二次小规模的标记,如果对象要在finalize()中成功拯救自己——只要重新与引用链上的任何一个对象建立关联即可,譬如把自己(this关键字)赋值给某个类变量或者对象的成员变量,那在第二次标记时它将被移出“即将回收”的集合;如果对象这时候还没有逃脱,那基本上它就真的要被回收了。从代码清单3-2中我们可以看到一个对象的finalize()被执行,但是它仍然可以存活。
4垃圾收集算法
现在我们知道垃圾收集器收集的主要区域是堆,收集目标是对象,堆区分为新生代和老年代,垃圾标记的算法有两种,Hotspot虚拟机以及其他大多数虚拟机中的垃圾收集器采用的都是可达性分析算法,那么找到了垃圾对象,如何进行回收呢?接下里就了解下jvm中存在的几种垃圾收集算法。
- 标记-清除算法
- 标记-复制算法
- 标记-整理算法
标记-清除算法
最早出现也是最基础的垃圾收集算法是“标记-清除”,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后,统一回收掉所有被标记的对象,也可以反过来,标记存活的对象,统一回收所有未被标记的对象。标记过程就是对象是否属于垃圾的判定过程。
缺点:
第一个是执行效率不稳定,如果Java堆中包含大量对象,而且其中大部分是需要被回收的,这时必须进行大量标记和清除的动作,导致标记和清除两个过程的执行效率都随对象数量增长而降低;
第二个是内存空间的碎片化问题,标记、清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致当以后在程序运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。
标记-复制算法
标记-复制算法常被简称为复制算法。将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。
缺点:
如果内存中多数对象都是存活的,这种算法将会产生大量的内存间复制的开销,但对于多数对象都是可回收的情况,算法需要复制的就是占少数的存活对象;
这种复制回收算法的代价是将可用内存缩小为了原来的一半,空间浪费未免太多了一点。
优点:
解决标记-清除算法面对大量可回收对象时执行效率低的问题
每次都是针对整个半区进行内存回收,分配内存时也就不用考虑有空间碎片的复杂情况,只要移动堆顶指针,按顺序分配即可。这样实现简单,运行高效。
Hotspot虚拟机在具体采用复制算法时候,是将堆区的新生代,划分为伊甸园区和两个幸存者区,在垃圾回收的时候先对伊甸园区进行回收,把存活的对象复制到其中一个空的幸存者区,下次回收的时就是对伊甸园区和非空的幸存者区进行回收,把存活的对象再复制到另一个空的幸存者区。这里只做一个简单的概述。
标记-整理算法
此算法中的标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向内存空间一端移动,然后直接清理掉边界以外的内存。
标记-清除算法与标记-整理算法的本质差异在于前者是一种非移动式的回收算法,而后者是移动式的。是否移动回收后的存活对象是一项优缺点并存的风险决策:
如果移动存活对象,尤其是在老年代这种每次回收都有大量对象存活区域,移动存活对象并更新所有引用这些对象的地方将会是一种极为负重的操作,而且这种对象移动操作必须全程暂停用户应用程序才能进行,这就更加让使用者不得不小心翼翼地权衡其弊端了,像这样的停顿被最初的虚拟机设计者形象地描述为“Stop The World”。
但如果跟标记-清除算法那样完全不考虑移动和整理存活对象的话,弥散于堆中的存活对象导致的空间碎片化问题就只能依赖更为复杂的内存分配器和内存访问器来解决。譬如通过“分区空闲分配链表”来解决内存分配问题(计算机硬盘存储大文件就不要求物理连续的磁盘空间,能够在碎片化的硬盘上存储和访问就是通过硬盘分区表实现的)。内存的访问是用户程序最频繁的操作,甚至都没有之一,假如在这个环节上增加了额外的负担,势必会直接影响应用程序的吞吐量。
基于以上两点,是否移动对象都存在弊端,移动则内存回收时会更复杂,不移动则内存分配时会更复杂。从垃圾收集的停顿时间来看,不移动对象停顿时间会更短,甚至可以不需要停顿,但是从整个程序的吞吐量来看,移动对象会更划算。此语境中,吞吐量的实质是赋值器(Mutator,可以理解为使用垃圾收集的用户程序,为便于理解,多数地方用“用户程序”或“用户线程”代替)与收集器的效率总和。即使不移动对象会使得收集器的效率提升一些,但因内存分配和访问相比垃圾收集频率要高得多,这部分的耗时增加,总吞吐量仍然是下降的。
HotSpot虚拟机里面关注吞吐量的ParallelScavenge收集器是基于标记-整理算法的,而关注延迟的CMS收集器则是基于标记-清除算法的,这也从侧面印证这点。另外,还有一种“和稀泥式”解决方案可以不在内存分配和访问上增加太大额外负担,做法是让虚拟机平时多数时间都采用标记-清除算法,暂时容忍内存碎片的存在,直到内存空间的碎片化程度已经大到影响对象分配时,再采用标记-整理算法收集一次,以获得规整的内存空间。前面提到的基于标记-清除算法的CMS收集器面临空间碎片过多时采用的就是这种处理办法。
Hotspot实现细节
标记算法让我们找到哪些对象可以回收,回收算法让我们知道该怎么回收垃圾对象,看起来比较简单,但是实现起来确实比较复杂的,我们来看下具体实现中会出现的问题。
如何找到过程gc root——oopMap
首先标记算法的实施,必须在一个一致性的快照里面进行才有意义,这就意味者stw,那么如何保证这个过程耗时最小是开发者必须考虑的问题。
而如今我们应用程序所分配的内存越来越大,无论是堆,方法区还是栈,都是不断增大的,这就意味着要想在庞大的内存中扫描全部的gc root也是比较耗时的,比如,我们在栈空间内寻找gc root(引用类型),栈空间内的变量不一定全是引用类型,也有基本类型,并且基本类型居多,如果我们对所有的变量进行扫描,势必也是一种时间和资源上的浪费,那么优化点肯定就是如何保证不扫描那些非引用类型的变量。
在HotSpot的解决方案里,是使用一组称为OopMap的数据结构来达到这个目的。一旦类加载动作完成的时候,HotSpot就会把对象内什么偏移量上是什么类型的数据计算出来,在即时编译过程中,也会在特定的位置记录下栈里和寄存器里哪些位置是引用。这样在扫描gc root的时候就只需要遍历这些oopmap即可。
安全点
因为每条指令都有可能导致引用发生变化,因此每条指令后都要操作一次oopmap,才能保证垃圾回收时候线程在任何位置中断都可以有准确的oopmap存在,那么这样以来,导致OopMap内容变化的指令非常多,那就必然需要大量的额外存储空间,这样垃圾收集伴随而来的空间成本就会变得无法忍受的高昂。
既然有这样的弊端,HotSpot自然也不会这样做,HotSpot的做法是只在“特定的位置”记录了这些信息,这些位置被称为安全点。有了安全点的设定,也就决定了用户程序执行时并非在代码指令流的任意位置都能够停顿下来开始垃圾收集,而是强制要求必须执行到达安全点后才能够暂停。因此,安全点的选定既不能太少以至于让收集器等待时间过长,也不能太过频繁以至于过分增大运行时的内存负荷。
安全点位置的选取基本上是以“是否具有让程序长时间执行的特征”为标准进行选定的,因为每条指令执行的时间都非常短暂,程序不太可能因为指令流长度太长这样的原因而长时间执行,“长时间执行”的最明显特征就是指令序列的复用,例如方法调用、循环跳转、异常跳转等都属于指令序列复用,所以只有具有这些功能的指令才会产生安全点。
对于安全点,另外一个需要考虑的问题是,如何在垃圾收集发生时让所有线程都跑到最近的安全点,然后停顿下来。这里有两种方案可供选择:
- 抢先式中断(Preemptive Suspension)
- 主动式中断(Voluntary Suspension)
抢先式中断不需要线程的执行代码主动去配合,在垃圾收集发生时,系统首先把所有用户线程全部中断,如果发现有用户线程中断的地方不在安全点上,就恢复这条线程执行,让它一会再重新中断,直到跑到安全点上。现在几乎没有虚拟机实现采用抢先式中断来暂停线程响应GC事件。
主动式中断的思想是当垃圾收集需要中断线程的时候,不直接对线程操作,仅仅简单地设置一个标志位,各个线程执行过程时会不停地主动去轮询这个标志,一旦发现中断标志为真时就自己在最近的安全点上主动中断挂起。轮询标志的地方和安全点是重合的,另外还要加上所有创建对象和其他需要在Java堆上分配内存的地方,这是为了检查是否即将要发生垃圾收集,避免没有足够内存分配新对象。
安全区域
使用安全点的设计似乎已经完美解决如何停顿用户线程,让虚拟机进入垃圾回收状态的问题了,但实际情况却并不一定。安全点机制保证了程序执行时,在不太长的时间内就会遇到可进入垃圾收集过程的安全点。但是,程序“不执行”的时候呢?所谓的程序不执行就是没有分配处理器时间,典型的场景便是用户线程处于Sleep状态或者Blocked状态,这时候线程无法响应虚拟机的中断请求,不能再走到安全的地方去中断挂起自己,虚拟机也显然不可能持续等待线程重新被激活分配处理器时间。
对于这种情况,就必须引入安全区域来解决。安全区域是指能够确保在某一段代码片段之中,引用关系不会发生变化,因此,在这个区域中任意地方开始垃圾收集都是安全的。我们也可以把安全区域看作被扩展拉伸了的安全点。当用户线程执行到安全区域里面的代码时,首先会标识自己已经进入了安全区域,那样当这段时间里虚拟机要发起垃圾收集时就不必去管这些已声明自己在安全区域内的线程了。当线程要离开安全区域时,它要检查虚拟机是否已经完成了根节点枚举(或者垃圾收集过程中其他需要暂停用户线程的阶段),如果完成了,那线程就当作没事发生过,继续执行;否则它就必须一直等待,直到收到可以离开安全区域的信号为止。
记忆集和卡表
我们上面讨论了,分代收集思想中把新生代和老年代采用不同收集策略和收集频率,那么就一定会出现跨代扫描,比如,我们在对新生代进行回收的时候,gc root来源于栈或者方法区,新生代中的某个对象被gc root引用到,会被标记,但是如果没有被标记就能说明是死亡对象吗,答案是否定的,因为有可能老年代的对象也会指向新生代,这便是跨代引用。
面对这样的问题,最笨拙的方法就是把整个老年代加进GC Roots扫描范围,找到对新生代的引用,从而进行标记,不用想,这样的方法是绝对不合适的,Hotspot虚拟机实际上是在此基础之上进行了优化。
Hotspot虚拟机在新生代中建立了名为记忆集的数据结构,记忆集是一种用于记录从非收集区域指向收集区域的指针集合的抽象数据结构,收集器只需要通过记忆集判断出某一块非收集区域是否存在有指向了收集区域的指针就可以了,并不需要了解这些跨代指针的全部细节。那设计者在实现记忆集的时候,便可以选择更为粗犷的记录粒度来节省记忆集的存储和维护成本,下面列举了一些可供选择的记录精度:
- 字长精度:每个记录精确到一个机器字长(就是处理器的寻址位数,如常见的32位或64位,这个精度决定了机器访问物理内存地址的指针长度),该字包含跨代指针。
- 对象精度:每个记录精确到一个对象,该对象里有字段含有跨代指针。
- 卡精度:每个记录精确到一块内存区域,该区域内有对象含有跨代指针。
其中,第三种“卡精度”所指的是用一种称为“卡表”(Card Table)的方式去实现记忆集,这也是目前最常用的一种记忆集实现形式,一些资料中甚至直接把它和记忆集混为一谈。前面定义中提到记忆集其实是一种“抽象”的数据结构,抽象的意思是只定义了记忆集的行为意图,并没有定义其行为的具体实现。卡表就是记忆集的一种具体实现,它定义了记忆集的记录精度、与堆内存的映射关系等。
HotSpot虚拟机实现的卡表是一个字节数组,字节数组CARD_TABLE的每一个元素都对应着其标识的内存区域中一块特定大小的内存块,这个内存块被称作“卡页”(Card Page)。一般来说,卡页大小都是以2的N次幂的字节数,HotSpot中使用的卡页是2的9次幂,即512字节(地址右移9位,相当于用地址除以512)。那如果卡表标识内存区域的起始地址是0x0000的话,数组CARD_TABLE的第0、1、2号元素,分别对应了地址范围为0x0000~0x01FF、0x0200~0x03FF、0x0400~0x05FF的卡页内存块。
一个卡页的内存中通常包含不止一个对象,只要卡页内有一个(或更多)对象的字段存在着跨代指针,那就将对应卡表的数组元素的值标识为1,称为这个元素变脏,没有则标识为0。在垃圾收集发生时,只要筛选出卡表中变脏的元素,就能轻易得出哪些卡页内存块中包含跨代指针,把它们加入GC Roots中一并扫描。
写屏障
现在已经解决了如何使用记忆集来缩减GC Roots扫描范围的问题,但还没有解决卡表元素如何维护的问题,例如它们何时变脏、谁来把它们变脏等。卡表元素何时变脏的答案是很明确的——有其他分代区域中对象引用了本区域对象时,其对应的卡表元素就应该变脏,变脏时间点原则上应该发生在引用类型字段赋值的那一刻。但问题是如何变脏,即如何在对象赋值的那一刻去更新维护卡表呢?假如是解释执行的字节码,那相对好处理,虚拟机负责每条字节码指令的执行,有充分的介入空间;但在编译执行的场景中呢?经过即时编译后的代码已经是纯粹的机器指令流了,这就必须找到一个在机器码层面的手段,把维护卡表的动作放到每一个赋值操作之中。
在HotSpot虚拟机里是通过写屏障(Write Barrier)技术维护卡表状态的。写屏障可以看作在虚拟机层面对“引用类型字段赋值”这个动作的AOP切面,在引用对象赋值时会产生一个环形(Around)通知,供程序执行额外的动作,也就是说赋值的前后都在写屏障的覆盖范畴内。在赋值前的部分的写屏障叫作写前屏障(Pre-Write Barrier),在赋值后的则叫作写后屏障(Post-Write Barrier)。HotSpot虚拟机的许多收集器中都有使用到写屏障,但直至G1收集器出现之前,其他收集器都只用到了写后屏障。下面是一段更新卡表状态的简化逻辑:
void oop_field_store(oop* field, oop new_value) {
// 引用字段赋值操作
*field = new_value;
// 写后屏障,在这里完成卡表状态更新
post_write_barrier(field, new_value);
}
应用写屏障后,虚拟机就会为所有赋值操作生成相应的指令,一旦收集器在写屏障中增加了更新卡表操作,无论更新的是不是老年代对新生代对象的引用,每次只要对引用进行更新,就会产生额外的开销,不过这个开销与Minor GC时扫描整个老年代的代价相比还是低得多的。除了写屏障的开销外,卡表在高并发场景下还面临着“伪共享”(False Sharing)问题。伪共享是处理并发底层细节时一种经常需要考虑的问题,现代中央处理器的缓存系统中是以缓存行(Cache Line)为单位存储的,当多线程修改互相独立的变量时,如果这些变量恰好共享同一个缓存行,就会彼此影响(写回、无效化或者同步)而导致性能降低,这就是伪共享问题。
假设处理器的缓存行大小为64字节,由于一个卡表元素占1个字节,64个卡表元素将共享同一个缓存行。这64个卡表元素对应的卡页总的内存为32KB(64×512字节),也就是说如果不同线程更新的对象正好处于这32KB的内存区域内,就会导致更新卡表时正好写入同一个缓存行而影响性能。为了避免伪共享问题,一种简单的解决方案是不采用无条件的写屏障,而是先检查卡表标记,只有当该卡表元素未被标记过时才将其标记为变脏,即将卡表更新的逻辑变为以下代码所示:
if (CARD_TABLE [this address >> 9] != 0)
CARD_TABLE [this address >> 9] = 0;
在JDK 7之后,HotSpot虚拟机增加了一个新的参数-XX:+UseCondCardMark,用来决定是否开启卡表更新的条件判断。开启会增加一次额外判断的开销,但能够避免伪共享问题,两者各有性能损耗,是否打开要根据应用实际运行情况来进行测试权衡
5垃圾收集器
现在我们知道垃圾收集器收集的主要区域是堆,收集目标是对象,堆区分为新生代和老年代,垃圾标记的算法有两种,Hotspot虚拟机以及其他大多数虚拟机中的垃圾收集器采用的都是可达性分析算法,找到垃圾对象后采用不同的回收算法进行回收,Hotspot实现中是把算法和垃圾收集器绑定在一起的,即不同的垃圾收集器采用的是不同的回收算法,那么Hotspot中都有哪些垃圾收集器呢?
首先要明确一点哈,如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。垃圾收收集器也只是垃圾回收机制的一部分,hotspot虚拟机对于不同的区域采用不同的垃圾收集器,每种垃圾收集器又可能采用不同的垃圾收集算法。
Serial收集器
Serial是一款采用复制算法的新生代单线程垃圾收集器,是最基本、历史最悠久的垃圾收集器了。它的 “单线程” 的意义不仅仅意味着它只会使用一条垃圾收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集工作的时候必须暂停其他所有的工作线程( "Stop The World" ),直到它收集结束。
虚拟机的设计者们当然知道Stop The World带来的不良用户体验,所以在后续的垃圾收集器设计中停顿时间在不断缩短(仍然还有停顿,寻找最优秀的垃圾收集器的过程仍然在继续)。
Serial收集器也是有优于其他垃圾收集器的地方的,它与其他单线程垃圾收集器相比简单而高效。Serial收集器由于没有线程交互的开销,自然可以获得很高的单线程收集效率。
Serial Old收集器
Serial Old收集器是一款采用标记整理算法的老年代单线程垃圾收集器。是Serial收集器的老年代版本,它同样是一个单线程收集器。它主要有两大用途:一种用途是在JDK1.5以及以前的版本中与Parallel Scavenge收集器搭配使用,另一种用途是作为CMS收集器的后备方案。
ParNew收集器
ParNew收集器是一款采用复制算法的多线程新生代垃圾收集器,实质上是Serial收集器的多线程并行版本,除了同时使用多条线程进行垃圾收集之外,其余的行为包括Serial收集器可用的所有控制参数、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一致,在实现上这两种收集器也共用了相当多的代码。 它是许多运行在Server模式下的虚拟机的首要选择,除了Serial收集器外,只有它能与CMS收集器配合工作。在JDK 8时将Serial+CMS、ParNew+Serial Old这两个组合声明为废弃,并在JDK 9中完全取消了这些组合的支持。这意味着ParNew和CMS从此只能互相搭配使用,再也没有其他收集器能够和它们配合了。读者也可以理解为从此以后,ParNew合并入CMS,成为它专门处理新生代的组成部分。ParNew可以说是HotSpot虚拟机中第一款退出历史舞台的垃圾收集器。
ParNew收集器除了支持多线程并行收集之外,其他与Serial收集器相比并没有太多创新之处,ParNew收集器在单核心处理器的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的伪双核处理器环境中都不能百分之百保证超越Serial收集器。当然,随着可以被使用的处理器核心数量的增加,ParNew对于垃圾收集时系统资源的高效利用还是很有好处的。它默认开启的收集线程数与处理器核心数量相同,在处理器核心非常多(譬如32个,现在CPU都是多核加超线程设计,服务器达到或超过32个逻辑核心的情况非常普遍)的环境中,可以使用-XX:ParallelGCThreads参数来限制垃圾收集的线程数。
Parallel Scavenge收集器
Parallel Scavenge是一款采用标记复制算法的多线程新生代垃圾收集器,该收集器关注点是吞吐量(高效率的利用CPU)。CMS等垃圾收集器的关注点更多的是用户线程的停顿时间(提高用户体验)。所谓吞吐量就是CPU中用于运行用户代码的时间与CPU总消耗时间的比值。
如果虚拟机完成某个任务,用户代码加上垃圾收集总共耗费了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。停顿时间越短就越适合需要与用户交互或需要保证服务响应质量的程序,良好的响应速度能提升用户体验;而高吞吐量则可以最高效率地利用处理器资源,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的分析任务。
Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的-XX:MaxGCPauseMillis参数以及直接设置吞吐量大小的-XX:GCTimeRatio参数。
-XX:MaxGCPauseMillis参数允许的值是一个大于0的毫秒数,收集器将尽力保证内存回收花费的时间不超过用户设定值。不过大家不要异想天开地认为如果把这个参数的值设置得更小一点就能使得系统的垃圾收集速度变得更快,垃圾收集停顿时间缩短是以牺牲吞吐量和新生代空间为代价换取的:系统把新生代调得小一些,收集300MB新生代肯定比收集500MB快,但这也直接导致垃圾收集发生得更频繁,原来10秒收集一次、每次停顿100毫秒,现在变成5秒收集一次、每次停顿70毫秒。停顿时间的确在下降,但吞吐量也降下来了。-XX:GCTimeRatio参数的值则应当是一个大于0小于100的整数,也就是垃圾收集时间占总时间的比率,相当于吞吐量的倒数。譬如把此参数设置为19,那允许的最大垃圾收集时间就占总时间的5%(即1/(1+19)),默认值为99,即允许最大1%(即1/(1+99))的垃圾收集时间。由于与吞吐量关系密切,Parallel Scavenge收集器也经常被称作“吞吐量优先收集器”。除上述两个参数之外,Parallel Scavenge收集器还有一个参数-XX:+UseAdaptiveSizePolicy值得我们关注。这是一个开关参数,当这个参数被激活之后,就不需要人工指定新生代的大小(-Xmn)、Eden与Survivor区的比例(-XX:SurvivorRatio)、晋升老年代对象大小(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量。这种调节方式称为垃圾收集的自适应的调节策略
如果读者对于收集器运作不太了解,手工优化存在困难的话,使用Parallel Scavenge收集器配合自适应调节策略,把内存管理的调优任务交给虚拟机去完成也许是一个很不错的选择。只需要把基本的内存数据设置好(如-Xmx设置最大堆),然后使用-XX:MaxGCPauseMillis参数(更关注最大停顿时间)或XX:GCTimeRatio(更关注吞吐量)参数给虚拟机设立一个优化目标,那具体细节参数的调节工作就由虚拟机完成了。自适应调节策略也是Parallel Scavenge收集器区别于ParNew收集器的一个重要特性。
Parallel Old收集器
Parallel Old是Parallel Scavenge收集器的老年代版本,支持多线程并发收集,基于标记-整理算法实现。这个收集器是直到JDK 6时才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于相当尴尬的状态,原因是如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old(PSMarkSweep)收集器以外别无选择,其他表现良好的老年代收集器,如CMS无法与它配合工作。由于老年代Serial Old收集器在服务端应用性能上的“拖累”,使用Parallel Scavenge收集器也未必能在整体上获得吞吐量最大化的效果。同样,由于单线程的老年代收集中无法充分利用服务器多处理器的并行处理能力,在老年代内存空间很大而且硬件规格比较高级的运行环境中,这种组合的总吞吐量甚至不一定比ParNew加CMS的组合来得优秀。直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的搭配组合,在注重吞吐量或者处理器资源较为稀缺的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器这个组合
6垃圾收集策略
现在我们已经有了垃圾收集器,但是垃圾收集器知识一个工具,至于什么时候使用,怎么上使用,还得一个人来推进,这便是垃圾收集器的收集策略,垃圾收集策略和对象的分配策略是分不开的。
一般情况下,新生代又会分为伊甸园区和两个幸存者区,新生代和老年代的比例是1:2,伊甸园区和两个幸存者区比例默认8:1:1,那么具体是如何分配呢?
对象优先在Eden分配
大多数情况下,对象在新生代中伊甸园区分配。当伊甸园区没有足够空间进行分配时,虚拟机将发起一次Minor GC。我们来进行实际测试一下,在测试之前我们先来看看 Minor GC和Full GC 有什么不同呢?
- Minor GC/Young GC:指发生新生代的的垃圾收集动作,Minor GC非常频繁,回收速度一般也比较快。
- Major GC/Full GC:一般会回收老年代 ,年轻代,方法区的垃圾,Major GC的速度一般会比Minor GC的慢10倍以上。
大量的对象被分配在eden区,eden区满了后会触发minor gc,可能会有99%以上的对象成为垃圾被回收掉,剩余存活的对象会被挪到为空的那块survivor区,下一次eden区满了后又会触发minor gc,把eden区和survivor区垃圾对象回收,把剩余存活的对象一次性挪动到另外一块为空的survivor区,因为新生代的对象都是朝生夕死的,存活时间很短,所以JVM默认的8:1:1的比例是很合适的,让eden区尽量的大,survivor区够用即可。
这里的8:1:1的比例不是一成不变的,jvm支持动态变化。 JVM默认有这个参数-XX:+UseAdaptiveSizePolicy(默认开启),会导致这个8:1:1比例自动变化,如果不想这个比例有变化可以设置参数-XX:-UseAdaptiveSizePolicy
大对象直接进入老年代
大对象就是需要大量连续内存空间的对象(比如:字符串、数组)。JVM参数 -XX:PretenureSizeThreshold 可以设置大对象的大小,如果对象超过设置大小会直接进入老年代,不会进入年轻代,这个参数只在 Serial 和ParNew两个收集器下有效。 比如设置JVM参数:-XX:PretenureSizeThreshold=1000000 (单位是字节) -XX:+UseSerialGC ,再执行下上面的第一个程序会发现大对象直接进了老年代 为什么要这样呢? 为了避免为大对象分配内存时的复制操作而降低效率。
长期存活的对象将进入老年代
既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别哪些对象应放在新生代,哪些对象应放在老年代中。为了做到这一点,虚拟机给每个对象一个对象年龄(Age)计数器。 如果对象在 Eden 出生并经过第一次 Minor GC 后仍然能够存活,并且能被 Survivor 容纳的话,将被移动到 Survivor 空间中,并将对象年龄设为1。对象在 Survivor 中每熬过一次 MinorGC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15岁,CMS收集器默认6岁,不同的垃圾收集器会略微有点不同),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。
对象动态年龄判断
当前放对象的Survivor区域里(其中一块区域,放对象的那块s区),一批对象的总大小大于这块Survivor区域内存大小的50%(-XX:TargetSurvivorRatio可以指定),那么此时大于等于这批对象年龄最大值的对象,就可以直接进入老年代了,例如Survivor区域里现在有一批对象,年龄1+年龄2+年龄n的多个年龄对象总和超过了Survivor区域的50%,此时就会把年龄n(含)以上的对象都放入老年代。这个规则其实是希望那些可能是长期存活的对象,尽早进入老年代。对象动态年龄判断机制一般是在minor gc之后触发的。
老年代空间分配担保机制
年轻代每次minor gc之前JVM都会计算下老年代剩余可用空间 如果这个可用空间小于年轻代里现有的所有对象大小之和(包括垃圾对象) 就会看一个“-XX:-HandlePromotionFailure”(jdk1.8默认就设置了)的参数是否设置了 如果有这个参数,就会看看老年代的可用内存大小,是否大于之前每一次minor gc后进入老年代的对象的平均大小。 如果上一步结果是小于或者之前说的参数没有设置,那么就会触发一次Full gc,对老年代和年轻代一起回收一次垃圾,如果回收完还是没有足够空间存放新的对象就会发生"OOM" 当然,如果minor gc之后剩余存活的需要挪动到老年代的对象大小还是大于老年代可用空间,那么也会触发full gc,full gc完之后如果还是没有空间放minor gc之后的存活对象,则也会发生“OOM”
老年代满后就会出发full gc,full gc 过程往往是比较慢的,我们在jvm优化中的目标经常是减少full gc的发生频率和时间。
7总结
以上我们探讨了Hotspot虚拟机对于垃圾收集机制的设计思想和设计实现,以上机制基本上是业界已经成熟应用的方案,java8默认ps+po作为默认的新生代和老年代垃圾收集器,但是即便此方案已经成熟应用,但是依然没有解决stw的问题,后面开发者也是致力于不断缩短stw的时间,后面我们讨论那些试图突破和突破了stw的并发收集器CMS和G1垃圾收集器以及真正的低延迟垃圾收集器ZGC和Shenandoah。
来自公众号:码农本农