1.flink高可用部署模式
-
Application 集群模式
-
Per-Job 集群模式,在 Kubernetes 上部署 Standalone 集群时不支持 Per-Job 集群模式。
-
Session 集群模式 2.启用集群高可用
-
依赖ZooKeeper的高可用服务
-
依赖Kubernetes 高可用服务 3.环境准备,为了使用 Flink 的 Kubernetes 高可用服务,你必须满足以下先决条件:
-
Kubernetes >= 1.9.
-
具有创建、编辑、删除 ConfigMaps 权限的服务帐户。想了解更多信息,请查看如何在 Flink 原生 Kubernetes 集成 和 在 Kubernetes 上单节点部署 Flink 两种模式中配置服务帐户。
-
flink的Dockerfile
FROM flink:1.13.5-scala_2.11
ADD ./flink-conf.yaml /opt/flink/conf/flink-conf.yaml
# 在容器中创建目录
RUN mkdir -p /opt/flink/flink-web-upload
- flink的配置文件
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
#==============================================================================
# Common
#==============================================================================
# The external address of the host on which the JobManager runs and can be
# reached by the TaskManagers and any clients which want to connect. This setting
# is only used in Standalone mode and may be overwritten on the JobManager side
# by specifying the --host <hostname> parameter of the bin/jobmanager.sh executable.
# In high availability mode, if you use the bin/start-cluster.sh script and setup
# the conf/masters file, this will be taken care of automatically. Yarn
# automatically configure the host name based on the hostname of the node where the
# JobManager runs.
jobmanager.rpc.address: localhost
# The RPC port where the JobManager is reachable.
#指定jar上传路径
web.upload.dir: /opt/flink
jobmanager.rpc.port: 6123
# The total process memory size for the JobManager.
#
# Note this accounts for all memory usage within the JobManager process, including JVM metaspace and other overhead.
jobmanager.memory.process.size: 1600m
# The total process memory size for the TaskManager.
#
# Note this accounts for all memory usage within the TaskManager process, including JVM metaspace and other overhead.
taskmanager.memory.process.size: 1728m
# To exclude JVM metaspace and overhead, please, use total Flink memory size instead of 'taskmanager.memory.process.size'.
# It is not recommended to set both 'taskmanager.memory.process.size' and Flink memory.
#
# taskmanager.memory.flink.size: 1280m
# The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline.
taskmanager.numberOfTaskSlots: 1
# The parallelism used for programs that did not specify and other parallelism.
parallelism.default: 1
# The default file system scheme and authority.
#
# By default file paths without scheme are interpreted relative to the local
# root file system 'file:///'. Use this to override the default and interpret
# relative paths relative to a different file system,
# for example 'hdfs://mynamenode:12345'
#
# fs.default-scheme
#==============================================================================
# High Availability
#==============================================================================
# The high-availability mode. Possible options are 'NONE' or 'zookeeper'.
#
# high-availability: zookeeper
# The path where metadata for master recovery is persisted. While ZooKeeper stores
# the small ground truth for checkpoint and leader election, this location stores
# the larger objects, like persisted dataflow graphs.
#
# Must be a durable file system that is accessible from all nodes
# (like HDFS, S3, Ceph, nfs, ...)
#
# high-availability.storageDir: hdfs:///flink/ha/
# The list of ZooKeeper quorum peers that coordinate the high-availability
# setup. This must be a list of the form:
# "host1:clientPort,host2:clientPort,..." (default clientPort: 2181)
#
# high-availability.zookeeper.quorum: localhost:2181
# ACL options are based on https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_BuiltinACLSchemes
# It can be either "creator" (ZOO_CREATE_ALL_ACL) or "open" (ZOO_OPEN_ACL_UNSAFE)
# The default value is "open" and it can be changed to "creator" if ZK security is enabled
#
# high-availability.zookeeper.client.acl: open
#==============================================================================
# Fault tolerance and checkpointing
#==============================================================================
# The backend that will be used to store operator state checkpoints if
# checkpointing is enabled. Checkpointing is enabled when execution.checkpointing.interval > 0.
#
# Execution checkpointing related parameters. Please refer to CheckpointConfig and ExecutionCheckpointingOptions for more details.
#
# execution.checkpointing.interval: 3min
# execution.checkpointing.externalized-checkpoint-retention: [DELETE_ON_CANCELLATION, RETAIN_ON_CANCELLATION]
# execution.checkpointing.max-concurrent-checkpoints: 1
# execution.checkpointing.min-pause: 0
# execution.checkpointing.mode: [EXACTLY_ONCE, AT_LEAST_ONCE]
# execution.checkpointing.timeout: 10min
# execution.checkpointing.tolerable-failed-checkpoints: 0
# execution.checkpointing.unaligned: false
#
# Supported backends are 'jobmanager', 'filesystem', 'rocksdb', or the
# <class-name-of-factory>.
#
# state.backend: filesystem
# Directory for checkpoints filesystem, when using any of the default bundled
# state backends.
#
# state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpoints
# Default target directory for savepoints, optional.
#
# state.savepoints.dir: hdfs://namenode-host:port/flink-savepoints
# Flag to enable/disable incremental checkpoints for backends that
# support incremental checkpoints (like the RocksDB state backend).
#
# state.backend.incremental: false
# The failover strategy, i.e., how the job computation recovers from task failures.
# Only restart tasks that may have been affected by the task failure, which typically includes
# downstream tasks and potentially upstream tasks if their produced data is no longer available for consumption.
jobmanager.execution.failover-strategy: region
#==============================================================================
# Rest & web frontend
#==============================================================================
# The port to which the REST client connects to. If rest.bind-port has
# not been specified, then the server will bind to this port as well.
#
#rest.port: 8081
# The address to which the REST client will connect to
#
#rest.address: 0.0.0.0
# Port range for the REST and web server to bind to.
#
#rest.bind-port: 8080-8090
# The address that the REST & web server binds to
#
#rest.bind-address: 0.0.0.0
# Flag to specify whether job submission is enabled from the web-based
# runtime monitor. Uncomment to disable.
#web.submit.enable: false
# Flag to specify whether job cancellation is enabled from the web-based
# runtime monitor. Uncomment to disable.
#web.cancel.enable: false
#==============================================================================
# Advanced
#==============================================================================
# Override the directories for temporary files. If not specified, the
# system-specific Java temporary directory (java.io.tmpdir property) is taken.
#
# For framework setups on Yarn, Flink will automatically pick up the
# containers' temp directories without any need for configuration.
#
# Add a delimited list for multiple directories, using the system directory
# delimiter (colon ':' on unix) or a comma, e.g.:
# /data1/tmp:/data2/tmp:/data3/tmp
#
# Note: Each directory entry is read from and written to by a different I/O
# thread. You can include the same directory multiple times in order to create
# multiple I/O threads against that directory. This is for example relevant for
# high-throughput RAIDs.
#
# io.tmp.dirs: /tmp
# The classloading resolve order. Possible values are 'child-first' (Flink's default)
# and 'parent-first' (Java's default).
#
# Child first classloading allows users to use different dependency/library
# versions in their application than those in the classpath. Switching back
# to 'parent-first' may help with debugging dependency issues.
#
# classloader.resolve-order: child-first
# The amount of memory going to the network stack. These numbers usually need
# no tuning. Adjusting them may be necessary in case of an "Insufficient number
# of network buffers" error. The default min is 64MB, the default max is 1GB.
#
# taskmanager.memory.network.fraction: 0.1
# taskmanager.memory.network.min: 64mb
# taskmanager.memory.network.max: 1gb
#==============================================================================
# Flink Cluster Security Configuration
#==============================================================================
# Kerberos authentication for various components - Hadoop, ZooKeeper, and connectors -
# may be enabled in four steps:
# 1. configure the local krb5.conf file
# 2. provide Kerberos credentials (either a keytab or a ticket cache w/ kinit)
# 3. make the credentials available to various JAAS login contexts
# 4. configure the connector to use JAAS/SASL
# The below configure how Kerberos credentials are provided. A keytab will be used instead of
# a ticket cache if the keytab path and principal are set.
# security.kerberos.login.use-ticket-cache: true
# security.kerberos.login.keytab: /path/to/kerberos/keytab
# security.kerberos.login.principal: flink-user
# The configuration below defines which JAAS login contexts
# security.kerberos.login.contexts: Client,KafkaClient
#==============================================================================
# ZK Security Configuration
#==============================================================================
# Below configurations are applicable if ZK ensemble is configured for security
# Override below configuration to provide custom ZK service name if configured
# zookeeper.sasl.service-name: zookeeper
# The configuration below must match one of the values set in "security.kerberos.login.contexts"
# zookeeper.sasl.login-context-name: Client
#==============================================================================
# HistoryServer
#==============================================================================
# The HistoryServer is started and stopped via bin/historyserver.sh (start|stop)
# Directory to upload completed jobs to. Add this directory to the list of
# monitored directories of the HistoryServer as well (see below).
#jobmanager.archive.fs.dir: hdfs:///completed-jobs/
# The address under which the web-based HistoryServer listens.
#historyserver.web.address: 0.0.0.0
# The port under which the web-based HistoryServer listens.
#historyserver.web.port: 8082
# Comma separated list of directories to monitor for completed jobs.
#historyserver.archive.fs.dir: hdfs:///completed-jobs/
# Interval in milliseconds for refreshing the monitored directories.
#historyserver.archive.fs.refresh-interval: 10000
注:
1.本教程依赖Kubernetes 高可用服务
2.k8s服务帐户会在后面给出yaml文件
3.部署yaml文件
- deployments
apiVersion: apps/v1
kind: Deployment
metadata:
name: flink-jobmanager
namespace: transport-ns-dev
spec:
replicas: 2 # 通过设置大于 1 的整型值来开启 Standby JobManager
selector:
matchLabels:
app: flink
component: jobmanager
template:
metadata:
labels:
app: flink
component: jobmanager
spec:
containers:
- name: jobmanager
image: flink:1
env:
- name: POD_IP
valueFrom:
fieldRef:
apiVersion: v1
fieldPath: status.podIP
# 下面的 args 参数会使用 POD_IP 对应的值覆盖 config map 中 jobmanager.rpc.address 的属性值。
args: ["jobmanager", "$(POD_IP)"]
ports:
- containerPort: 6123
name: rpc
- containerPort: 6124
name: blob-server
- containerPort: 8081
name: webui
volumeMounts:
- name: flink-config-volume
mountPath: /opt/flink/conf
- name: flink-jar
mountPath: /opt/flink/flink-web-upload
securityContext:
runAsUser: 9999 # 参考官方 flink 镜像中的 _flink_ 用户,如有必要可以修改
serviceAccountName: flink-service-account # 拥有创建、编辑、删除 ConfigMap 权限的 Service 账号
volumes:
- name: flink-config-volume
configMap:
name: flink-config
items:
- key: flink-conf.yaml
path: flink-conf.yaml
- key: log4j-console.properties
path: log4j-console.properties
- name: flink-jar
persistentVolumeClaim:
claimName: flink-jar-pvc
livenessProbe:
tcpSocket:
port: 6123
initialDelaySeconds: 30
periodSeconds: 60
readinessProbe:
tcpSocket:
port: 6123
initialDelaySeconds: 110
imagePullPolicy: Always
restartPolicy: Always
imagePullSecrets:
- name: jp-nexus-secret
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: flink-taskmanager
namespace: transport-ns-dev
spec:
replicas: 3
selector:
matchLabels:
app: flink
component: taskmanager
template:
metadata:
labels:
app: flink
component: taskmanager
spec:
containers:
- name: taskmanager
image: flink:1
args: ["taskmanager"]
ports:
- containerPort: 6122
name: rpc
- containerPort: 6125
name: query-state
volumeMounts:
- name: flink-config-volume
mountPath: /opt/flink/conf/
securityContext:
runAsUser: 9999 # 参考官方 flink 镜像中的 _flink_ 用户,如有必要可以修改
volumes:
- name: flink-config-volume
configMap:
name: flink-config
items:
- key: flink-conf.yaml
path: flink-conf.yaml
- key: log4j-console.properties
path: log4j-console.properties
livenessProbe:
tcpSocket:
port: 6122
initialDelaySeconds: 30
periodSeconds: 60
readinessProbe:
tcpSocket:
port: 6122
initialDelaySeconds: 110
imagePullPolicy: Always
restartPolicy: Always
imagePullSecrets:
- name: jp-nexus-secret
注:
1.这里在yaml文件中配置了serviceCount账号
2.当启用了高可用,Flink 会使用自己的 HA 服务进行服务发现。因此,JobManager Pod 会使用 IP 地址而不是 Kubernetes 的 service 名称来作为 `jobmanager.rpc.address` 的配置项启动。
- Config Maps
apiVersion: v1
kind: ConfigMap
metadata:
name: flink-config
namespace: transport-ns-dev
labels:
app: flink
data:
flink-conf.yaml: |+
jobmanager.rpc.address: flink-jobmanager
taskmanager.numberOfTaskSlots: 2
blob.server.port: 6124
jobmanager.rpc.port: 6123
taskmanager.rpc.port: 6122
queryable-state.proxy.ports: 6125
jobmanager.memory.process.size: 1600m
taskmanager.memory.process.size: 1728m
web.upload.dir: /opt/flink
parallelism.default: 2
kubernetes.cluster-id: flink-ha
high-availability: org.apache.flink.kubernetes.highavailability.KubernetesHaServicesFactory
high-availability.storageDir: file:/flink/recovery #存储数据到本地文件系统
restart-strategy: fixed-delay
restart-strategy.fixed-delay.attempts: 10
log4j-console.properties: |+
# 如下配置会同时影响用户代码和 Flink 的日志行为
rootLogger.level = INFO
rootLogger.appenderRef.console.ref = ConsoleAppender
rootLogger.appenderRef.rolling.ref = RollingFileAppender
# 如果你只想改变 Flink 的日志行为则可以取消如下的注释部分
#logger.flink.name = org.apache.flink
#logger.flink.level = INFO
# 下面几行将公共 libraries 或 connectors 的日志级别保持在 INFO 级别。
# root logger 的配置不会覆盖此处配置。
# 你必须手动修改这里的日志级别。
logger.akka.name = akka
logger.akka.level = INFO
logger.kafka.name= org.apache.kafka
logger.kafka.level = INFO
logger.hadoop.name = org.apache.hadoop
logger.hadoop.level = INFO
logger.zookeeper.name = org.apache.zookeeper
logger.zookeeper.level = INFO
# 将所有 info 级别的日志输出到 console
appender.console.name = ConsoleAppender
appender.console.type = CONSOLE
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n
# 将所有 info 级别的日志输出到指定的 rolling file
appender.rolling.name = RollingFileAppender
appender.rolling.type = RollingFile
appender.rolling.append = false
appender.rolling.fileName = ${sys:log.file}
appender.rolling.filePattern = ${sys:log.file}.%i
appender.rolling.layout.type = PatternLayout
appender.rolling.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n
appender.rolling.policies.type = Policies
appender.rolling.policies.size.type = SizeBasedTriggeringPolicy
appender.rolling.policies.size.size=100MB
appender.rolling.strategy.type = DefaultRolloverStrategy
appender.rolling.strategy.max = 10
# 关闭 Netty channel handler 中不相关的(错误)警告
logger.netty.name = org.jboss.netty.channel.DefaultChannelPipeline
logger.netty.level = OFF
注意事项:
- web.upload.dir: /opt/flink是flink镜像存放jar目录,是我自己构建镜像是创建的
- high-availability.storageDir: file:/flink/recovery,这个配置我使用的是本地文件,在flink使用本地文件系统
文件系统介绍:nightlies.apache.org/flink/flink…
- service
###可选的 service,该 service 将 jobmanager 的 `rest` 端口暴露为公共 Kubernetes node 的节点端口。
apiVersion: v1
kind: Service
metadata:
name: flink-jobmanager-rest
namespace: transport-ns-dev
spec:
type: NodePort
ports:
- name: rest
port: 8081
targetPort: 8081
nodePort: 30082
selector:
app: flink
component: jobmanager
---
###该service将TaskManager的端口暴露为公共 Kubernetes node 的节点端口,通过该端口来访问 queryable state 服务。
apiVersion: v1
kind: Service
metadata:
name: flink-taskmanager-query-state
namespace: transport-ns-dev
spec:
type: NodePort
ports:
- name: query-state
port: 6125
targetPort: 6125
nodePort: 30025
selector:
app: flink
component: taskmanager
- ServiceAccount
apiVersion: v1
kind: ServiceAccount
metadata:
name: flink-service-account
namespace: transport-ns-dev
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
namespace: transport-ns-dev
name: configmap-updater
rules:
- apiGroups: [""]
resources: ["configmaps"]
verbs: ["update", "get","create","delete","watch","list"]
---
###一开始绑定了这个用户权限,发现后台任然报错403,就使用了ClusterRoleBinding,即集群最高权限
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: flink-pods
namespace: transport-ns-dev
subjects:
- kind: ServiceAccount
name: flink-service-account
namespace: transport-ns-dev
roleRef:
kind: Role
name: configmap-updater
apiGroup: rbac.authorization.k8s.io
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: flink-pods-cluster-role
subjects:
- kind: ServiceAccount
name: flink-service-account
namespace: transport-ns-dev
roleRef:
kind: ClusterRole
name: cluster-admin #k8s集群中最高权限的角色
apiGroup: rbac.authorization.k8s.io
- PersistentVolumeClaim
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: flink-jar-pvc
namespace: transport-ns-dev
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 5Gi
storageClassName: traffic-nfs-storage
volumeMode: Filesystem
注: 持久化实时任务jar,因为k8s节点会漂移,所以需要将实时任务jar持久化