线程安全
1、乐观锁,CAS思想
java乐观锁机制:
乐观锁体现的是悲观锁的反面。它是一种积极的思想,它总是认为数据是不会被修改的,所以是不会对数据上锁的。但是乐观锁在更新的时候会去判断数据是否被更新过。乐观锁的实现方案一般有两种(版本号机制和CAS)。乐观锁适用于读多写少的场景,这样可以提高系统的并发量。在Java中 java.util.concurrent.atomic下的原子变量类就是使用了乐观锁的一种实现方式CAS实现的。
乐观锁,大多是基于数据版本 (Version)记录机制实现。即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个 “version” 字段来 实现。 读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提 交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据 版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。
CAS思想:
CAS就是compare and swap(比较交换),是一种很出名的无锁的算法,就是可以不使用锁机制实现线程间的同步。使用CAS线程是不会被阻塞的,所以又称为非阻塞同步。CAS算法涉及到三个操作:
需要读写内存值V;进行比较的值A;准备写入的值B
当且仅当V的值等于A的值等于V的值的时候,才用B的值去更新V的值,否则不会执行任何操作(比较和替换是一个原子操作-A和V比较,V和B替换),一般情况下是一个自旋操作,即不断重试
缺点:
高并发的情况下,很容易发生并发冲突,如果CAS一直失败,那么就会一直重试,浪费CPU资源
原子性:
功能限制CAS是能保证单个变量的操作是原子性的,在Java中要配合使用volatile关键字来保证线程的安全;当涉及到多个变量的时候CAS无能为力;除此之外CAS实现需要硬件层面的支持,在Java的普通用户中无法直接使用,只能借助atomic包下的原子类实现,灵活性受到了限制
2、synchronized底层实现
使用方法: 主要的三种使⽤⽅式
修饰实例⽅法: 作⽤于当前对象实例加锁,进⼊同步代码前要获得当前对象实例的锁
修饰静态⽅法: 也就是给当前类加锁,会作⽤于类的所有对象实例,因为静态成员不属于任何⼀个实例对象,是类成员。
修饰代码块: 指定加锁对象,对给定对象加锁,进⼊同步代码库前要获得给定对象的锁。
总结: synchronized锁住的资源只有两类:一个是对象,一个是类。
底层实现:
对象头是我们需要关注的重点,它是synchronized实现锁的基础,因为synchronized申请锁、上锁、释放锁都与对象头有关。对象头主要结构是由Mark Word 组成,其中Mark Word存储对象的hashCode、锁信息或分代年龄或GC标志等信息。
锁也分不同状态,JDK6之前只有两个状态:无锁、有锁(重量级锁),而在JDK6之后对synchronized进行了优化,新增了两种状态,总共就是四个状态:无锁状态、偏向锁、轻量级锁、重量级锁,其中无锁就是一种状态了。锁的类型和状态在对象头Mark Word中都有记录,在申请锁、锁升级等过程中JVM都需要读取对象的Mark Word数据。
同步代码块是利用 monitorenter 和 monitorexit 指令实现的,而同步方法则是利用 flags 实现的。
3、ReenTrantLock底层实现
由于ReentrantLock是java.util.concurrent包下提供的一套互斥锁,相比Synchronized,ReentrantLock类提供了一些高级功能
使用方法:
基于API层面的互斥锁,需要lock()和unlock()方法配合try/finally语句块来完成
底层实现:
ReenTrantLock的实现是一种自旋锁,通过循环调用CAS操作来实现加锁。它的性能比较好也是因为避免了使线程进入内核态的阻塞状态。想尽办法避免线程进入内核的阻塞状态是我们去分析和理解锁设计的关键钥匙。
和synchronized区别:
1、底层实现:synchronized 是JVM层面的锁,是Java关键字,通过monitor对象来完成(monitorenter与monitorexit),ReentrantLock 是从jdk1.5以来(java.util.concurrent.locks.Lock)提供的API层面的锁。
2、实现原理* *:synchronized 的实现涉及到锁的升级,具体为无锁、偏向锁、自旋锁、向OS申请重量级锁;ReentrantLock实现则是通过利用CAS(CompareAndSwap)自旋机制保证线程操作的原子性和volatile保证数据可见性以实现锁的功能。
3、是否可手动释放: synchronized 不需要用户去手动释放锁,synchronized 代码执行完后系统会自动让线程释放对锁的占用; ReentrantLock则需要用户去手动释放锁,如果没有手动释放锁,就可能导致死锁现象。
4、是否可中断synchronized是不可中断类型的锁,除非加锁的代码中出现异常或正常执行完成; ReentrantLock则可以中断,可通过trylock(long timeout,TimeUnit unit)设置超时方法或者将lockInterruptibly()放到代码块中,调用interrupt方法进行中断。
5、是否公平锁synchronized为非公平锁 ReentrantLock则即可以选公平锁也可以选非公平锁,通过构造方法new ReentrantLock时传入boolean值进行选择,为空默认false非公平锁,true为公平锁,公平锁性能非常低。
4、公平锁和非公平锁区别
公平锁:
公平锁自然是遵循FIFO(先进先出)原则的,先到的线程会优先获取资源,后到的会进行排队等待
优点: 所有的线程都能得到资源,不会饿死在队列中。适合大任务
缺点: 吞吐量会下降,队列里面除了第一个线程,其他的线程都会阻塞,cpu唤醒阻塞线程的开销大
非公平锁:
多个线程去获取锁的时候,会直接去尝试获取,获取不到,再去进入等待队列,如果能获取到,就直接获取到锁。
优点: 可以减少CPU唤醒线程的开销,整体的吞吐效率会高点,CPU也不必取唤醒所有线程,会减少唤起线程的数量。
缺点: 你们可能也发现了,这样可能导致队列中间的线程一直获取不到锁或者长时间获取不到锁
公平锁效率低原因:
公平锁要维护一个队列,后来的线程要加锁,即使锁空闲,也要先检查有没有其他线程在 wait,如果有自己要挂起,加到队列后面,然后唤醒队列最前面线程。这种情况下相比较非公平锁多了一次挂起和唤醒。
线程切换的开销,其实就是非公平锁效率高于公平锁的原因,因为非公平锁减少了线程挂起的几率,后来的线程有一定几率逃离被挂起的开销。
5、使用层面锁优化
【1】减少锁的时间: 不需要同步执行的代码,能不放在同步快里面执行就不要放在同步快内,可以让锁尽快释放;
【2】减少锁的粒度: 它的思想是将物理上的一个锁,拆成逻辑上的多个锁,增加并行度,从而降低锁竞争。它的思想也是用空间来换时间;java中很多数据结构都是采用这种方法提高并发操作的效率,比如:
ConcurrentHashMap:
java中的ConcurrentHashMap在jdk1.8之前的版本,使用一个Segment 数组:Segment< K,V >[] segments
Segment继承自ReenTrantLock,所以每个Segment是个可重入锁,每个Segment 有一个HashEntry< K,V >数组用来存放数据,put操作时,先确定往哪个Segment放数据,只需要锁定这个Segment,执行put,其它的Segment不会被锁定;所以数组中有多少个Segment就允许同一时刻多少个线程存放数据,这样增加了并发能力。
【3】锁粗化: 大部分情况下我们是要让锁的粒度最小化,锁的粗化则是要增大锁的粒度;
假如有一个循环,循环内的操作需要加锁,我们应该把锁放到循环外面,否则每次进出循环,都进出一次临界区,效率是非常差的;
【4】使用读写锁:
ReentrantReadWriteLock 是一个读写锁,读操作加读锁,可并发读,写操作使用写锁,只能单线程写;
【5】使用CAS:
如果需要同步的操作执行速度非常快,并且线程竞争并不激烈,这时候使用cas效率会更高,因为加锁会导致线程的上下文切换,如果上下文切换的耗时比同步操作本身更耗时,且线程对资源的竞争不激烈,使用volatiled+cas操作会是非常高效的选择;
6、系统层面锁优化
自适应自旋锁:
自旋锁可以避免等待竞争锁进入阻塞挂起状态被唤醒造成的内核态和用户态之间的切换的损耗,它们只需要等一等(自旋),但是如果锁被其他线程长时间占用,一直不释放CPU,死等会带来更多的性能开销;自旋次数默认值是10
对上面自旋锁优化方式的进一步优化,它的自旋的次数不再固定,其自旋的次数由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定,这就解决了自旋锁带来的缺点
锁消除:
锁削除是指虚拟机即时编译器在运行时,对一些代码上要求同步,但是被检测到不可能存在共享数据竞争的锁进行削除。Netty中无锁化设计pipeline中channelhandler会进行锁消除的优化。
锁升级:
偏向锁:
如果线程已经占有这个锁,当他在次试图去获取这个锁的时候,他会已最快的方式去拿到这个锁,而不需要在进行一些monitor操作,因为在大部分情况下是没有竞争的,所以使用偏向锁是可以提高性能的;
轻量级锁:
在竞争不激烈的情况下,通过CAS避免线程上下文切换,可以显著的提高性能。
重量级锁:
重量级锁的加锁、解锁过程造成的损耗是固定的,重量级锁适合于竞争激烈、高并发、同步块执行时间长的情况。
7、ThreadLocal原理
ThreadLocal简介:
通常情况下,我们创建的变量是可以被任何⼀个线程访问并修改的。如果想实现每⼀个线程都有⾃⼰的 专属本地变量该如何解决呢? JDK中提供的 ThreadLocal 类正是为了解决这样的问题。类似操作系统中的TLAB
原理:
首先 ThreadLocal 是一个泛型类,保证可以接受任何类型的对象。因为一个线程内可以存在多个 ThreadLocal 对象,所以其实是 ThreadLocal 内部维护了一个 Map ,是 ThreadLocal 实现的一个叫做 ThreadLocalMap 的静态内部类。
最终的变量是放在了当前线程的 ThreadLocalMap 中,并不是存在 ThreadLocal 上,ThreadLocal 可以理解为只是ThreadLocalMap的封装,传递了变量值。
我们使用的 get()、set() 方法其实都是调用了这个ThreadLocalMap类对应的 get()、set() 方法。例如下面的
如何使用:
1)存储用户Session
private static final ThreadLocal threadSession = new ThreadLocal();
2)解决线程安全的问题
private static ThreadLocal<SimpleDateFormat> format1 = new ThreadLocal<SimpleDateFormat>()
ThreadLocal内存泄漏的场景
实际上 ThreadLocalMap 中使用的 key 为 ThreadLocal 的弱引用,⽽ value 是强引⽤。弱引用的特点是,如果这个对象持有弱引用,那么在下一次垃圾回收的时候必然会被清理掉。
所以如果 ThreadLocal 没有被外部强引用的情况下,在垃圾回收的时候会被清理掉的,这样一来 ThreadLocalMap中使用这个 ThreadLocal 的 key 也会被清理掉。但是,value 是强引用,不会被清理,这样一来就会出现 key 为 null 的 value。 假如我们不做任何措施的话,value 永远⽆法被GC 回收,如果线程长时间不被销毁,可能会产⽣内存泄露。
ThreadLocalMap实现中已经考虑了这种情况,在调用 set()、get()、remove() 方法的时候,会清理掉 key 为 null 的记录。如果说会出现内存泄漏,那只有在出现了 key 为 null 的记录后,没有手动调用 remove() 方法,并且之后也不再调用 get()、set()、remove() 方法的情况下。因此使⽤完ThreadLocal ⽅法后,最好⼿动调⽤ remove() ⽅法。
8、HashMap线程安全
死循环造成 CPU 100%
HashMap 有可能会发生死循环并且造成 CPU 100% ,这种情况发生最主要的原因就是在扩容的时候,也就是内部新建新的 HashMap 的时候,扩容的逻辑会反转散列桶中的节点顺序,当有多个线程同时进行扩容的时候,由于 HashMap 并非线程安全的,所以如果两个线程同时反转的话,便可能形成一个循环,并且这种循环是链表的循环,相当于 A 节点指向 B 节点,B 节点又指回到 A 节点,这样一来,在下一次想要获取该 key 所对应的 value 的时候,便会在遍历链表的时候发生永远无法遍历结束的情况,也就发生 CPU 100% 的情况。
所以综上所述,HashMap 是线程不安全的,在多线程使用场景中推荐使用线程安全同时性能比较好的 ConcurrentHashMap。
9、String不可变原因
- 可以使用字符串常量池,多次创建同样的字符串会指向同一个内存地址
- 可以很方便地用作 HashMap 的 key。通常建议把不可变对象作为 HashMap的 key
- hashCode生成后就不会改变,使用时无需重新计算
- 线程安全,因为具备不变性的对象一定是线程安全的
- [ 萱儿AXW ]