这是我的第一篇掘金博客,开启掘金写作之路
demo的流程
- model.py ——定义LeNet网络模型
- train.py ——加载数据集并训练,训练集计算loss(损失值),测试集计算accuracy,保存训练好的网络参数
- predict.py——得到训练好的网络参数后,用自己找的图像进行分类测试
1. model.py
先给出代码,模型是基于LeNet做简单修改,很容易理解:
import torch.nn.functional as F
class LeNet(nn.Module): # 继承于nn.Module这个父类
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 5)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 32, 5)
self.pool2 = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(32*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.relu(self.conv1(x)) # input(3, 32, 32) output(16, 28, 28)
x = self.pool1(x) # output(16, 14, 14)
x = F.relu(self.conv2(x)) # output(32, 10, 10)
x = self.pool2(x) # output(32, 5, 5)
x = x.view(-1, 32*5*5) # output(32*5*5)
x = F.relu(self.fc1(x)) # output(120)
x = F.relu(self.fc2(x)) # output(84)
x = self.fc3(x) # output(10)
return x
- pytorch 中 tensor张量(也就是输入输出层)的 通道排序为:
[batch, channel, height, width]在我的代码中我们默认batch为1
nn.Conv2d 卷积层 conv2d(channel(通道数),卷积核个数,卷积核大小(高和宽相等))
-
nn.MaxPool2d 下采样层 MaxPool2d(2x2大小的卷积核) --->意思就是缩小高和宽一半
-
nn.Linear 全连接层(前一层的特征数,下一层特征数)
-
Linear(in_features, out_features, bias=True)
2. train.py
导包
import torchvision
import torch.nn as nn
from model import LeNet
import torch.optim as optim
import torchvision.transforms as transforms
下载数据集:
数据集下载这里:
导入、加载 训练集
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# 50000张训练图片
# 第一次使用时要将download设置为True才会自动去下载数据集
train_set = torchvision.datasets.CIFAR10(root='./data', train=True,
download=False, transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=36,
shuffle=True, num_workers=0)
transforms.ToTensor() 将给定图像转为Tensor
transforms.Normalize() 归一化处理
transform.ToTensor(), transform.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))
以上面代码为例,ToTensor()能够把灰度范围从0-255变换到0-1之间,而后面的transform.Normalize()则把0-1变换到(-1,1)
那为什么一定要0-1变换到(-1,1)? 计算机更喜欢,并且容易收敛,如果是0-255,在某些操作对图片进行处理,数值也很容易溢出
导入、加载 测试集
# 第一次使用时要将download设置为True才会自动去下载数据集
val_set = torchvision.datasets.CIFAR10(root='./data', train=False,
download=False, transform=transform)
val_loader = torch.utils.data.DataLoader(val_set, batch_size=5000,
shuffle=False, num_workers=0)
# 获取测试集中的图像和标签,用于accuracy计算
val_data_iter = iter(val_loader)
val_image, val_label = val_data_iter.next()
类别
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
开始训练
net = LeNet()
loss_function = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
for epoch in range(5): # loop over the dataset multiple times
running_loss = 0.0
for step, data in enumerate(train_loader, start=0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if step % 500 == 499: # print every 500 mini-batches
with torch.no_grad():
outputs = net(val_image) # [batch, 10]
predict_y = torch.max(outputs, dim=1)[1]
accuracy = torch.eq(predict_y, val_label).sum().item() / val_label.size(0)
print('[%d, %5d] train_loss: %.3f test_accuracy: %.3f' %
(epoch + 1, step + 1, running_loss / 500, accuracy))
running_loss = 0.0
print('Finished Training')
save_path = './Lenet.pth'
torch.save(net.state_dict(), save_path)
if __name__ == '__main__':
main()
其中
outputs = net(inputs) # 正向传播
loss = loss_function(outputs, labels) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 优化器更新参数
训练结果
这个是我们看我们的目录多出个pth文件类型(这个就是我们的模型)
3. predict.py
用来预测,根据训练的模型预测东西
import torchvision.transforms as transforms
from PIL import Image
from model import LeNet
def main(): #我们首先需resize成跟训练集图像一样的大小
transform = transforms.Compose(
[transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# 实例化网络,加载训练好的模型参数
net = LeNet()
net.load_state_dict(torch.load('Lenet.pth'))
# 导入要测试的图像(自己找的,不在数据集中),放在源文件目录下
im = Image.open('3.jpeg')
im = transform(im) # [C, H, W]
im = torch.unsqueeze(im, dim=0) '''对数据增加一个新维度,因为tensor的参数是[batch,
channel, height, width]'''
#预测
with torch.no_grad():
outputs = net(im)
predict = torch.max(outputs, dim=1)[1].data.numpy()
print(classes[int(predict)])
if __name__ == '__main__':
main()