JVM垃圾回收器学习总结

158 阅读17分钟

GC分类与性能指标

按工作区间分

  • 年轻代垃圾回收器
  • 老年代垃圾回收器

按工作模式分

  • 独占式垃圾回收器 运行时会stop the world
  • 并发式垃圾回收器 和应用程序交替运行

按碎片处理方式分

  • 压缩式垃圾回收器 消除碎片,再分配对象使用指针碰撞的方式
  • 非压缩式垃圾回收器 不整理碎片,维护一个空闲列表

性能指标

主要关注吞吐量暂停时间

吞吐量

  1. 就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量=运行用户代码时间/ (运行用户代码时间+垃圾收集时间)。
    • 比如:虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。
  2. 这种情况下,应用程序能容忍较高的暂停时间,因此,高吞吐量的应用程序有更长的时间基准,快速响应是不必考虑的。
  3. 吞吐量优先,意味着在单位时间内,STW的时间最短: 0.2 + 0.2 = 0.4

“暂停时间”

  1. 是指一个时间段内应用程序线程暂停,让GC线程执行的状态
    • 例如,GC期间100毫秒的暂停时间意味着在这100毫秒期间内没有应用程序线程是活动的。|
  2. 暂停时间优先,意味着尽可能让单次STW的时间最短:0.1+0.1+0.1+0.1+0.1=0.5

不幸的是”高吞吐量”和”低暂停时间”是一对相互竞争的目标(矛盾)。

  • 因为如果选择以吞吐量优先,那么必然需要降低内存回收的执行频率,但是这样会导致GC需要更长的暂停时间来执行内存回收。
  • 相反的,如果选择以低延迟优先为原则,那么为了降低每次执行内存回收时的暂停时间,也只能频繁地执行内存回收,但这又引起了年轻代内存的缩减和导致程序吞吐量的下降。

在设计(或使用) GC算法时,我们必须确定我们的目标:一个GC算法只可能针对两个目标之-一(即只专注于较大吞吐量或最小暂停时间),或尝试找到一个二者的折衷。

现在标准:在最大吞吐量优先的情况下,降低停顿时间。

不同的垃圾回收器概述

7种经典的垃圾回收器

  1. 串行回收器:Serial、Serial Old
  2. ParNew、Parallel Scavenge、 Parallel Old
  3. 并发回收器: CMS、 G1

与垃圾分代之间的关系

  1. 新生代收集器: SerialParNewParallel Scavenge;
  2. 老年代收集器: Serial OldParallel OldCMS;
  3. 整堆收集器: G1;

垃圾收集器的组合关系

如何查看默认的垃圾收集器

  1. -xx:+PrintCommandLineFlags:查看命令行相关参数(包含使用的垃圾收集器)
  2. 使用命令行指令: jinfo -flag 相关垃圾回收器参数 进程ID

Serial回收器:串行回收

  • 历史最悠久最基本的垃圾收集器
  • Client模式下的默认新生代垃圾收集器
  • 采用复制算法,串行回收和“Stop-the-world”机制的方式执行垃圾回收
  • 针对老年代,有Serial Old收集器,采用串行回收和“Stop the World”机制,只不过内存回收算法使用的是标记-压缩算法

这个收集器是一个单线程的收集器,但它的“单线程”的意义并不仅仅说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束(Stop The World)

在HotSpot虚拟机中,使用-XX:+UseSerialGC 参数可以指定年轻代和老年代都使用串行收集器。等价于新生代用Serial GC,且老年代用Serial Old GC

ParNew回收器:并行回收

在单个cpu环境下,ParNew不一定比Serial高效

Parallel回收器:吞吐量优先

  1. HotSpot的年轻代中除了拥有ParNew收集器是基于并行回收的以外,Parallel scavenge收集器同样也采用了复制算法、并行回收和”Stopthe world"机制。
  2. 那么Parallel收集器的出现是否多此一举?
    • 和ParNew收集器不同,Parallel scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput),它也被称为吞吐量优先的垃圾收集器。
    • 自适应调节策略也是Parallel scavenge与ParNew一个重要区别。
  3. 高吞吐量则可以高效率地利用CPU 时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。因此,常见在服务器环境中使用。例如,那些执行批量处理、订单处理、工资支付、科学计算的应用程序。
  4. Parallel收集器在JDK1.6时提供了用于执行老年代垃圾收集的Parallel old收集器,用来代替老年代的serial old收集器。
  5. Parallel old收集器采用了标记-压缩算法,但同样也是基于并行回收和"stop-the-world"机制。
  6. Java8中,默认的垃圾收集器

Parallel回收器

CMS回收器:低延迟

  1. 在JDK 1.5时期,HotSpot推出了一款在强交互应用中几乎可认为有划时代意义的垃圾收集器: CMS(concurrent-Mark-Sweep)收集器,这款收集器是HotSpot虚拟机中第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程同时工作
  2. CMS收集器的关注点是尽可能缩短垃圾收集时用户线程的停顿时间。停顿时间越短(低延迟)就越适合与用户交互的程序,良好的响应速度能提升用户体验。
    • 目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。
  3. CMS的垃圾收集算法采用标记-清除算法,并且也会"stop-the-world"

CMS收集器

CMS整个过程比之前的收集器要复杂,整个过程分为4个主要阶段,即初始标记阶段、并发标记阶段、重新标记阶段和并发清除阶段。

  1. 初始标记(Initial-Mark)阶段:在这个阶段中,程序中所有的工作线程都将会因为“Stop-the-world”机制而出现短暂的暂停,这个阶段的主要任务仅仅只是标记出GC Roots能直接关联到的对象。一旦标记完成之后就会恢复之前被暂停的所有应用线程。由于直接关联对象比较小,所以这里的速度非常快
  2. 并发标记(Concurrent-Mark)阶段:从GC Roots的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行。
  3. 重新标记(Remark)阶段:由于在并发标记阶段中,程序的工作线程会和垃圾收集线程同时运行或者交叉运行,因此为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短
  4. 并发清除(Concurrent-Sweep)阶段:此阶段清理删除掉标记阶段判断的已经死亡的对象,释放内存空间。由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的
  5. 另外,由于在垃圾收集阶段用户线程没有中断,所以在CMS回收过程中,还应该确保应用程序用户线程有足够的内存可用。因此,CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,而是当堆内存使用率达到某一阈值时,便开始进行回收,以确保应用程序在CMS工作过程中依然有足够的空间支持应用程序运行。要是CMS运行期间预留的内存无法满足程序需要,就会出现一次“Concurrent Mode Failure”失败,这时虚拟机将启动后备预案:临时启用Serial old 收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。

弊端

  1. 由于采用的是标记-清除算法,会产生内存碎片,不能采用指针碰撞,所以需要维护一个空闲列表,在无法分配大对象时,提前进行一次FULL GC
  2. CMS收集器对CPU资源非常敏感。在并发阶段,它虽然不会导致用户停顿,但是会因为占用了一部分线程而导致应用程序变慢,总吞吐量会降低。
  3. CMS收集器无法处理浮动垃圾。可能出现“Concurrent Mode Failure"失败而导致另一次 Full GC 的产生。在并发标记阶段由于程序的工作线程和垃圾收集线程是同时运行或者交叉运行的,那么在并发标记阶段如果产生新的垃圾对象,CMS将无法对这些垃圾对象进行标记,最终会导致这些新产生的垃圾对象没有被及时回收,从而只能在下一次执行GC时释放这些之前未被回收的内存空间。

小结

  • 如果你想要最小化地使用内存和并行开销,请选serial GC;
  • 如果你想要最大化应用程序的吞吐量,请选Parallel GC;
  • 如果你想要最小化cc的中断或停顿时间,请选CMS GC。

G1回收器:区域化分代式

  • 为了适应现在不断扩大的内存和不断增加的处理器数量,进一步降低暂停时间(pause time),同时兼顾良好的吞吐量。
  • 官方给G1设定的目标是在延迟可控的情况下获得尽可能高的吞吐量,所以才担当起“全功能收集器”的重任与期望。
  • Gl (Garbage-First)是一款面向服务端应用的垃圾收集器,主要针对配备多核cPU及大容量内存的机器,以极高概率满足GC停顿时间的同时,还兼具高吞吐量的性能特征。

为什么叫G1

  1. 因为G1是一个并行回收器,它把堆内存分割为很多不相关的区域(Region)(物理上不连续的)。使用不同的Region来表示Eden、幸存者o区,幸存者1区,老年代等。
  2. G1 Gc有计划地避免在整个Java堆中进行全区域的垃圾收集。G1 跟踪各个Region里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的Region
  3. 由于这种方式的侧重点在于回收垃圾最大量的区间(Region),所以我们给G1一个名字:垃圾优先(Garbage First) 。

优势

  1. 并行与并发:
    • 并行性(指垃圾回收多线程并行):G1在回收期间,可以有多个cc线程同时工作,有效利用多核计算能力。此时用户线程STW
    • 并发性:G1拥有与应用程序交替执行的能力,部分工作可以和应用程序同时执行,因此,一般来说,不会在整个回收阶段发生完全阻塞应用程序的情况
  2. 分代收集
    • 从分代上看,G1依然属于分代型垃圾回收器,它会区分年轻代和老年代,年轻代依然有Eden区和survivor区。但从堆的结构上看,它不要求整个Eden区、年轻代或者老年代都是连续的,也不再坚持固定大小和固定数量。
    • 堆空间分为若干个区域(Region),这些区域中包含了逻辑上的年轻代和老年代
    • 和之前的各类回收器不同,它同时兼顾年轻代和老年代。对比其他回收器,或者工作在年轻代,或者工作在老年代;
  3. 空间整合
    • CMS:“标记-清除”算法、内存碎片、若干次GC后进行一次碎片整理
    • G1将内存划分为一个个的region。内存的回收是以region作为基本单位的。Region之间是复制算法,但整体上实际可看作是标记-压缩(Mark-Compact)算法,两种算法都可以避免内存碎片。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。尤其是当Java堆非常大的时候,G1的优势更加明显。
  4. 可预测的停顿时间模型(即:软实时soft real-time)
    • 这是G1相对于CMs 的另一大优势,G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒。
    • 由于分区的原因,G1可以只选取部分区域进行内存回收,这样缩小了回收的范围,因此对于全局停顿情况的发生也能得到较好的控制。
    • G1跟踪各个 Region里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的Region。保证了G1收集器在有限的时间内可以获取尽可能高的收集效率
    • 相比于CMS GC,G1未必能做到CMS在最好情况下的延时停顿,但是最差情况要好很多。

劣势

  • 相较于CMS,G1还不具备全方位、压倒性优势。比如在用户程序运行过程中,G1无论是为了垃圾收集产生的内存占用(Footprint)还是程序运行时的额外执行负载(overload)都要比CMS要高。
  • 从经验上来说,在小内存应用上CNS的表现大概率会优于G1,而G1在大内存应用上则发挥其优势。平衡点在6-8GB之间。

G1操作步骤

  • 第一步:开启G1垃圾收集器
  • 第二步:设置堆的最大内存
  • 第三步:设置最大的停顿时间

G1应用场景

  1. HotSpot垃圾收集器里,除了G1以外,其他的垃圾收集器使用内置的VM线程执行Gc的多线程操作,而G1 GC可以采用应用线程承担后台运行的Gc工作,即当JVM的GC线程处理速度慢时,系统会调用应用程序线程帮助加速垃圾回收过程。
  2. 面向服务端应用,针对具有大内存、多处理器的机器。(在普通大小的堆里表现并不惊喜)
  3. 最主要的应用是需要低GC延迟,并具有大堆的应用程序提供解决方案;
  4. 用来替换掉JDK1.5中的CMS收集器;在下面的情况时,使用61可能比CMS好:
    • 超过50%的Java堆被活动数据占用;
    • 对象分配频率或年代提升频率变化很大;
    • GC停顿时间过长((长于0.5至1秒)。

分区Region:化整为零

  1. 使用G1收集器时,它将整个Java堆划分成约2048个大小相同的独立Region块,每个Region块大小根据堆空间的实际大小而定,整体被控制在1MB到32MB之间,且为2的N次幂,即1MB,2MB,4MB,8MB,16MB,32MB。可以通过-XX:G1HeapRegionsize设定。所有的Region大小相同,且在JVM生命周期内不会被改变。
  2. 虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分Region(不需要连续)的集合。通过Region的动态分配方式实现逻辑上的连续。

region

  • 一个region有可能属于Eden,survivor或者 old/Tenured内存区域。但是一个region只可能属于一个角色。图中的E表示该region属于Eden内存区域,s表示属于survivor内存区域,o表示属于old内存区域。图中空白的表示未使用的内存空间。
  • G1垃圾收集器还增加了一种新的内存区域,叫做Humongous内存区域,如图中的 H块。主要用于存储大对象,如果超过1.5个region,就放到H
  • 设置H的原因:
    • 对于堆中的大对象,默认直接会被分配到老年代,但是如果它是一个短期存在的大对象,就会对垃圾收集器造成负面影响。为了解决这个问题,G1划分了一个Humongous区,它用来专门存放大对象。如果一个H区装不下一个大对象,那么G1会寻找连续的H区来存储。为了能找到连续的H区,有时候不得不启动Full GC。G1的大多数行为都把H区作为老年代的一部分来看待。

G1垃圾回收主要包括三个环节

  1. 年轻代Gc( Young GC)
  2. 当堆内存使用达到一定值(默认45%)时,进行老年代并发标记过程(Concurrent Marking)
  3. 标记完成后,开始混合回收(Mixed GC)
    • 标记完成马上开始混合回收过程。对于一个混合回收期,G1 GC从老年区间移动存活对象到空闲区间,这些空闲区间也就成为了老年代的一部分。和年轻代不同,老年代的G1回收器和其他Gc不同,G1的老年代回收器不需要整个老年代被回收,一次只需要扫描/回收一小部分老年代的Region就可以了。同时,这个老年代Region是和年轻代一起被回收的。
  4. (如果需要,单线程、独占式、高强度的Full GC还是继续存在的。它针对Gc的评估失败提供了一种失败保护机制,即强力回收。)

Remembered SET

  • 一个对象被不同区域引用的问题
  • 一个Region不可能是孤立的,一个Region中的对象可能被其他任意Region中对象引用.判断对象存活时,是否需要扫描整个Java堆才能保证准确?
  • 在其他的分代收集器,也存在这样的问题(而G1更突出)回收新生代也不得不同时扫描老年代?
  • 这样的话会降低Minor GC的效率;

如何解决呢?

  • 无论G1还是其他分代收集器,JVM都是使用Remembered Set来避免全局扫描:
  • 每个Region都有一个对应的Remembered set;
  • 每次Reference类型数据写操作时,都会产生一个write Barrier暂时中断操作;
  • 然后检查将要写入的引用指向的对象是否和该Reference类型数据在不同的Region(其他收集器:检查老年代对象是否引用了新生代对象);
  • 如果不同,通过cardTable把相关引用信息记录到引用指向对象的所在Region对应的Remembered set中;
  • 当进行垃圾收集时,在Gc根节点的枚举范围加入Remembered Set;就可以保证不进行全局扫描,也不会有遗漏。

垃圾回收器总结