##载入相关模块
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
import matplotlib.pyplot as plt
##载入数据
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
##提取特征和样品
#取前面100个数,第一列、第二列和最后一列
data = np.array(df.iloc[:100, [0, 1, -1]])
#最后一个特征作为标签,其他的作为特征
X, y = data[:,:-1], data[:,-1]
#取80%作为训练,20%作为测试
#X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
y = np.array([1 if i == 1 else -1 for i in y]) #把原本取值为0和1的y,调整成-1和1
class Model:
#初始化
def __init__(self):
#初始化w,b和学习
self.w = np.ones(len(data[0]) - 1, dtype=np.float32)
self.b = 0
self.l_rate = 0.1
# self.data = data
#定义线性函数
def lin(self, x, w, b):
y = np.dot(x, w) + b
return y
# 随机梯度下降法
def fit(self, X_train, y_train):
is_wrong = False
while not is_wrong:
wrong_count = 0
for d in range(len(X_train)):
X = X_train[d]
y = y_train[d]
if y * self.lin(X, self.w, self.b) <= 0: #意思是分错了,然后就改呗(梯度下降公式)
self.w = self.w + self.l_rate * (y * X)
self.b = self.b + self.l_rate * y
wrong_count += 1 #分错了得记下来
if wrong_count == 0:
is_wrong = True #若全对了,就不进如while循环了
return 'Perceptron Model!'
def score(self):
pass
##模型训练
perceptron = Model() #实例化感知机
perceptron.fit(X, y) #进行训练
参数估计结果
perceptron.w[0],perceptron.w[1],perceptron.b
绘图
x_points = np.linspace(4, 7, 10)
y_ = -(perceptron.w[0] * x_points + perceptron.b) / perceptron.w[1]
plt.plot(x_points, y_)
plt.plot(data[:50, 0], data[:50, 1], 'bo', color='blue', label='0')
plt.plot(data[50:100, 0], data[50:100, 1], 'bo', color='orange', label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()