Java对象的创建过程

350 阅读8分钟

一、对象的创建过程

1、Class Loading

1)通过一个类的全限定名来获取定义此类的二进制字节流

2)将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构

3)在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口

2、Class Linking

Verification、Preparation、Resolution

2.1 Verification

验证是连接阶段的第一步,这一阶段的目的是确保Class文件的字节流中包含的信息符合《Java虚拟机规范》的全部约束要求,保证这些信息被当作代码运行后不会危害虚拟机自身的安全

(1)文件格式验证

第一阶段要验证字节流是否符合Class文件格式的规范,并且能被当前版本的虚拟机处理。

(2)元数据验证

第二阶段是对字节码描述的信息进行语义分析,以保证其描述的信息符合《Java语言规范》的要求。

(3)字节码验证

第三阶段是整个验证过程中最复杂的一个阶段,主要目的是通过数据流分析和控制流分析,确定程序语义是合法的、符合逻辑的。在第二阶段对元数据信息中的数据类型校验完毕以后,这阶段就要对类的方法体(Class文件中的Code属性)进行校验分析,保证被校验类的方法在运行时不会做出危害虚拟机安全的行为。

(4)符号引用验证

最后一个阶段的校验行为发生在虚拟机将符号引用转化为直接引用的时候,这个转化动作将在连接的第三阶段——解析阶段中发生。符号引用验证可以看作是对类自身以外(常量池中的各种符号引用)的各类信息进行匹配性校验,通俗来说就是,该类是否缺少或者被禁止访问它依赖的某些外部类、方法、字段等资源。

2.2 Preparation

准备阶段是正式为类中定义的变量(即静态变量,被static修饰的变量)分配内存并设置类变量初始值的阶段从概念上讲,这些变量所使用的内存都应当在方法区中进行分配,但必须注意到方法区本身是一个逻辑上的区域,在JDK 7及之前,HotSpot使用永久代来实现方法区时,实现是完全符合这种逻辑概念的;而在JDK 8及之后,类变量则会随着Class对象一起存放在Java堆中,这时候“类变量在方法区”就完全是一种对逻辑概念的表述了。

关于准备阶段,还有两个容易产生混淆的概念,首先是这时候进行内存分配的仅包括类变量,而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在Java堆中。其次是这里所说的初始值“通常情况”下是数据类型的零值。

数据类型的零值

2.3 Resolution

解析阶段是Java虚拟机将常量池内的符号引用替换为直接引用的过程

符号引用(Symbolic References):符号引用以一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时能无歧义地定位到目标即可。符号引用与虚拟机实现的内存布局无关,引用的目标并不一定是已经加载到虚拟机内存当中的内容。 各种虚拟机实现的内存布局可以各不相同,但是它们能接受的符号引用必须都是一致的,因为符号引用的字面量形式明确定义在《Java虚拟机规范》的Class文件格式中。

直接引用(Direct References):直接引用是可以直接指向目标的指针、相对偏移量或者是一个能间接定位到目标的句柄。直接引用是和虚拟机实现的内存布局直接相关的,同一个符号引用在不同虚拟机实例上翻译出来的直接引用一般不会相同。 如果有了直接引用,那引用的目标必定已经在虚拟机的内存中存在。

3、Class Initializing

类的初始化阶段是类加载过程的最后一个步骤,之前介绍的几个类加载的动作里,除了在加载阶段用户应用程序可以通过自定义类加载器的方式局部参与外,其余动作都完全由Java虚拟机来主导控制。直到初始化阶段,Java虚拟机才真正开始执行类中编写的Java程序代码,将主导权移交给应用程序

4、申请对象内存

5、成员变量赋零值

6、成员变量赋初始值,执行构造方法语句

二、对象在内存中的存储布局

1、普通对象

(1)对象头:markword 8字节(HotSpot里称为markword)

(2)ClassPointer指针:指向对象所属Class对象(T.class)的指针

-XX:+UseCompressedClassPointers 开启指针压缩为4字节,不开启为8字节。

(3)实例数据: 引用类型:-XX:+UseCompressedOops 开启对象压缩为4字节,不开启为8字节(例如String、Object引用类型)。

Oops:Ordinary Object Pointers

(4)Padding对齐:使整个对象大小为8字节的倍数

2、数组对象

(1)对象头:同普通对象

(2)ClassPointer:同普通对象

(3)数组长度: 4字节

(4)数组数据:同普通对象

(5)对齐:同普通对象

三、对象头(markword) 具体包括什么?

markword

HotSpot虚拟机的对象头分为两部分,第一部分用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄等。这部分数据的长度在32位和64位的Java虚拟机中分别会占用32个或64个比特,官方称它为“Mark Word”。另外一部分用于存储指向方法区对象类型数据的指针,如果是数组对象,还会有一个额外的部分用于存储数组长度。

由于对象头信息是与对象自身定义的数据无关的额外存储成本,考虑到Java虚拟机的空间使用效率,Mark Word被设计成一个非固定的动态数据结构,以便在极小的空间内存储尽量多的信息。它会根据对象的状态复用自己的存储空间。例如在32位的HotSpot虚拟机中,对象未被锁定的状态下,Mark Word的32个比特空间里的25个比特将用于存储对象哈希码,4个比特用于存储对象分代年龄,2个比特用于存储锁标志位,还有1个比特固定为0(这表示未进入偏向模式)。对象除了未被锁定的正常状态外,还有轻量级锁定、重量级锁定、GC标记、可偏向等几种不同状态。

四、对象如何定位

T t = new T();

1、句柄池

句柄池

t对象指向两个指针,这两个指针其中一个指向T对象的地址,另一个指向T.class的地址

执行效率低,GC效率高

如果使用句柄访问的话,Java堆中将可能会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据(T对象的地址)与类型数据(Class)各自具体的地址信息。

2、直接指针(HostSpot采用)

直接指针

t直接指向new出来的T对象的地址,在T对象内部有一个指针指向T.class的地址

执行效率高,GC效率低

如果使用直接指针访问的话,Java堆中对象的内存布局就必须考虑如何放置访问类型数据的相关信息,reference中存储的直接就是对象地址,如果只是访问对象本身的话,就不需要多一次间接访问的开销。

五、对象如何分配

1、栈上分配:

要求:

(1)线程私有小对象

(2)无逃逸:就只在某一段代码使用,除此之外没有人认识

(3)支持标量替换:支持用对象的属性(非引用类型)来代替整个对象

2、对象是否太大:

栈上分配失败,如果对象太大,则直接进入老年代。

可以通过-XX:PreTenureSizeThreshold指定大对象的大小。

3、线程本地分配:

(Thread Local Allocation Buffer)栈上分配不了且对象不大,尝试线程本地分配(当然TLAB也是Eden区的一部分)

4、Eden区分配:

线程本地分配失败,则放到Eden区

此后对象在GC时被回收