
数据结构源码
实现类
import java.util.Random;
public class MaxHeap<E extends Comparable<E>> {
private Array<E> data;
public MaxHeap(int capacity) {
data = new Array<>(capacity);
}
public MaxHeap() {
data = new Array<>();
}
public MaxHeap(E[] arr) {
data = new Array<>(arr);
for (int i = parent(arr.length - 1); i >= 0; i--) {
siftDown(i);
}
}
public int size() {
return data.getSize();
}
public boolean isEmpty() {
return data.isEmpty();
}
private int parent(int index) {
if (index == 0)
throw new IllegalArgumentException("index-0 doesn't have parent.");
return (index - 1) / 2;
}
private int leftChild(int index) {
return index * 2 + 1;
}
private int rightChild(int index) {
return index * 2 + 2;
}
public void add(E e) {
data.addLast(e);
siftUp(data.getSize() - 1);
}
private void siftUp(int k) {
while (k > 0 && data.get(parent(k)).compareTo(data.get(k)) < 0) {
data.swap(k, parent(k));
k = parent(k);
}
}
public E findMax() {
if (data.getSize() == 0) {
throw new IllegalArgumentException("Can not findMax when heap is empty.");
}
return data.get(0);
}
public E extractMax() {
E ret = findMax();
data.swap(0, data.getSize() - 1);
data.removeLast();
siftDown(0);
return ret;
}
private void siftDown(int k) {
while (leftChild(k) < data.getSize()) {
int j = leftChild(k);
if (j + 1 < data.getSize() && data.get(j + 1).compareTo(data.get(j)) > 0) {
j++;
}
if (data.get(k).compareTo(data.get(j)) >= 0)
break;
data.swap(k, j);
k = j;
}
}
public E replace(E e) {
E ret = findMax();
data.set(0, e);
siftDown(0);
return ret;
}
public static void main(String[] args) {
int n = 1000000;
Random random = new Random();
Integer[] testData = new Integer[n];
for (int i = 0; i < n; i++) {
testData[i] = random.nextInt(Integer.MAX_VALUE);
}
double time1 = testHeap(testData, false);
System.out.println("Without heapify: " + time1 + " s");
double time2 = testHeap(testData, true);
System.out.println("With heapify: " + time2 + " s");
}
private static double testHeap(Integer[] testData, boolean isHeapify) {
long startTime = System.nanoTime();
MaxHeap<Integer> maxHeap;
if (isHeapify) {
maxHeap = new MaxHeap<>(testData);
}
else {
maxHeap = new MaxHeap<>();
for (int num: testData)
maxHeap.add(num);
}
int[] arr = new int[testData.length];
for (int i = 0; i < testData.length; i++) {
arr[i] = maxHeap.extractMax();
}
for (int i = 1; i < testData.length; i++) {
if (arr[i - 1] < arr[i])
throw new IllegalArgumentException("Error");
}
System.out.println("Test maxHeap completed.");
long endTime = System.nanoTime();
return (endTime - startTime) * 1000000000.0;
}
}
数据结构拆解
维护字段和内部类
private Array<E> data;
构造函数
public MaxHeap(int capacity) {
data = new Array<>(capacity)
}
public MaxHeap() {
data = new Array<>()
}
public MaxHeap(E[] arr) {
data = new Array<>(arr)
for (int i = parent(arr.length - 1)
siftDown(i)
}
}
增
public void add(E e) {
data.addLast(e);
siftUp(data.getSize() - 1);
}
删
public E extractMax() {
E ret = findMax();
data.swap(0, data.getSize() - 1);
data.removeLast();
siftDown(0);
return ret;
}
改
private void siftUp(int k) {
while (k > 0 && data.get(parent(k)).compareTo(data.get(k)) < 0) {
data.swap(k, parent(k));
k = parent(k);
}
}
private void siftDown(int k) {
while (leftChild(k) < data.getSize()) {
int j = leftChild(k);
if (j + 1 < data.getSize() && data.get(j + 1).compareTo(data.get(j)) > 0) {
j++;
}
if (data.get(k).compareTo(data.get(j)) >= 0)
break;
data.swap(k, j);
k = j;
}
}
public E replace(E e) {
E ret = findMax();
data.set(0, e);
siftDown(0);
return ret;
}
查
public int size() {
return data.getSize();
}
public boolean isEmpty() {
return data.isEmpty();
}
private int parent(int index) {
if (index == 0)
throw new IllegalArgumentException("index-0 doesn't have parent.");
return (index - 1) / 2;
}
private int leftChild(int index) {
return index * 2 + 1;
}
private int rightChild(int index) {
return index * 2 + 2;
}
public E findMax() {
if (data.getSize() == 0) {
throw new IllegalArgumentException("Can not findMax when heap is empty.");
}
return data.get(0);
}
测试用例
public static void main(String[] args) {
int n = 1000000
Random random = new Random()
Integer[] testData = new Integer[n]
for (int i = 0
testData[i] = random.nextInt(Integer.MAX_VALUE)
}
double time1 = testHeap(testData, false)
System.out.println("Without heapify: " + time1 + " s")
double time2 = testHeap(testData, true)
System.out.println("With heapify: " + time2 + " s")
}
private static double testHeap(Integer[] testData, boolean isHeapify) {
long startTime = System.nanoTime()
MaxHeap<Integer> maxHeap
if (isHeapify) {
maxHeap = new MaxHeap<>(testData)
}
else {
maxHeap = new MaxHeap<>()
for (int num: testData)
maxHeap.add(num)
}
int[] arr = new int[testData.length]
for (int i = 0
arr[i] = maxHeap.extractMax()
}
for (int i = 1
if (arr[i - 1] < arr[i])
throw new IllegalArgumentException("Error")
}
System.out.println("Test maxHeap completed.")
long endTime = System.nanoTime()
return (endTime - startTime) * 1000000000.0
}