这是我参与11月更文挑战的第22天,活动详情查看:2021最后一次更文挑战
Lock
public interface Lock {
void lock();
void lockInterruptibly() throws InterruptedException;
boolean tryLock();
boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
void unlock();
Condition newCondition();
}
ReentrantLock
底层是AQS,Sync, 有两个子类FairSync和NonfairSync,公平锁和非公平锁, 默认非公平
public ReentrantLock() {
sync = new NonfairSync();
}
原理
-
一个State变量,标记锁状态
private volatile int state; -
记录持有线程锁
private transient Thread exclusiveOwnerThread; -
阻塞和唤醒
public static void park(Object blocker) { Thread t = Thread.currentThread(); setBlocker(t, blocker); UNSAFE.park(false, 0L); setBlocker(t, null); } public static void unpark(Thread thread) { if (thread != null) UNSAFE.unpark(thread); } -
阻塞队列存放等待队列
static final class Node { static final Node SHARED = new Node(); static final Node EXCLUSIVE = null; static final int CANCELLED = 1; static final int SIGNAL = -1; static final int CONDITION = -2; static final int PROPAGATE = -3; volatile int waitStatus; volatile Node prev; volatile Node next; volatile Thread thread; Node nextWaiter; final boolean isShared() { return nextWaiter == SHARED; } final Node predecessor() throws NullPointerException { Node p = prev; if (p == null) throw new NullPointerException(); else return p; } Node() { } Node(Thread thread, Node mode) { this.nextWaiter = mode; this.thread = thread; } Node(Thread thread, int waitStatus) { this.waitStatus = waitStatus; this.thread = thread; } } -
lock
非公平锁
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {//不考虑队列中的其他线程
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
公平锁
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {//state等于0并且队列中没有等待的线程
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
addWaiter 为当前线程创建Node,添加到链表里
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
acquireQueued阻塞线程, 该方法并不会中断响应,但会记录被阻塞期间的中断。
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
- unlock
public void unlock() {
sync.release(1);
}
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
private void unparkSuccessor(Node node) {
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);
}
Condition
public final void await() throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
//加入等待队列
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
//阻塞当前线程
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
//重新获取锁
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}
线程调用await的时候,肯定拿到了锁,直接单线程处理, 执行wait之前必须先释放锁,fullRelease。
唤醒后,必须用acquireQueued(node,savedState)方法重新拿锁。
checkInterruptWhileWaiting判断是否收到过中断信号,决定是否响应中断。
public final void signal() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignal(first);
}
private void doSignal(Node first) {
do {
if ( (firstWaiter = first.nextWaiter) == null)
lastWaiter = null;
first.nextWaiter = null;
} while (!transferForSignal(first) &&
(first = firstWaiter) != null);
}
final boolean transferForSignal(Node node) {
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false;
Node p = enq(node);
int ws = p.waitStatus;
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
LockSupport.unpark(node.thread);
return true;
}
ReentrantReadWriteLock
读和读不互斥
public interface ReadWriteLock {
Lock readLock();
Lock writeLock();
}
原理
ReadLock和WriteLock 公用一个sync对象,分公平锁和非公平锁,默认非公平锁。 用state变量表示锁状态, state低16位记录写锁, 高16位记录读锁
非公平锁
static final class NonfairSync extends Sync {
final boolean writerShouldBlock() {
return false;
}
final boolean readerShouldBlock() {
return apparentlyFirstQueuedIsExclusive();
}
}
公平锁
static final class FairSync extends Sync {
final boolean writerShouldBlock() {
return hasQueuedPredecessors();
}
final boolean readerShouldBlock() {
return hasQueuedPredecessors();
}
}
写锁
public boolean tryLock() {
return sync.tryWriteLock();
}
final boolean tryWriteLock() {
Thread current = Thread.currentThread();
int c = getState();
if (c != 0) { //不为0, 写线程获取锁个数为0,写线程不是当前线程 失败
int w = exclusiveCount(c);
if (w == 0 || current != getExclusiveOwnerThread())
return false;
if (w == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
}
if (!compareAndSetState(c, c + 1)) //cas
return false;
setExclusiveOwnerThread(current);
return true;
}
public void lock() {
sync.acquire(1);
}
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
tryLock和lock不区分公平和非公平
读锁
final boolean tryReadLock() {
Thread current = Thread.currentThread();
for (;;) {
int c = getState();
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
return false;
int r = sharedCount(c);
if (r == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
if (compareAndSetState(c, c + SHARED_UNIT)) {
if (r == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return true;
}
}
}
StampedLock
读读不互斥,读写不互斥,写写互斥。
引入“乐观读”策略,读的时候不加锁, 读出来发现数据被修改了, 升级为悲观读,避免写线程被饿死了。
state变量分成两半,表示读锁和写锁的状态, 同时还表示了数据的version。 最低8位表示读写的状态,第8位表示写锁的状态,最低的七位标识读锁的状态。
state初始值不能为0 ,取的是ORIGIN。如果是0 , validate永远变成false.
乐观读
public long tryOptimisticRead() {
long s;
return (((s = state) & WBIT) == 0L) ? (s & SBITS) : 0L;
}
public boolean validate(long stamp) {
U.loadFence();
return (stamp & SBITS) == (state & SBITS);
}
写
内部重新实现了一个阻塞队列, 锁的调度方面, 当CAS失败后,没有阻塞, 而是会自旋, 超过自旋次数后,才会阻塞。
public long writeLock() {
long s, next; // bypass acquireWrite in fully unlocked case only
return ((((s = state) & ABITS) == 0L &&
U.compareAndSwapLong(this, STATE, s, next = s + WBIT)) ?
next : acquireWrite(false, 0L));
}
public long tryWriteLock(long time, TimeUnit unit)
throws InterruptedException {
long nanos = unit.toNanos(time);
if (!Thread.interrupted()) {
long next, deadline;
if ((next = tryWriteLock()) != 0L)
return next;
if (nanos <= 0L)
return 0L;
if ((deadline = System.nanoTime() + nanos) == 0L)
deadline = 1L;
if ((next = acquireWrite(true, deadline)) != INTERRUPTED)
return next;
}
throw new InterruptedException();
}
private long acquireWrite(boolean interruptible, long deadline) {
WNode node = null, p;
for (int spins = -1;;) { // spin while enqueuing
long m, s, ns;
if ((m = (s = state) & ABITS) == 0L) {
if (U.compareAndSwapLong(this, STATE, s, ns = s + WBIT))
return ns;
}
else if (spins < 0)
spins = (m == WBIT && wtail == whead) ? SPINS : 0;
else if (spins > 0) {
if (LockSupport.nextSecondarySeed() >= 0)
--spins;
}
else if ((p = wtail) == null) { // initialize queue
WNode hd = new WNode(WMODE, null);
if (U.compareAndSwapObject(this, WHEAD, null, hd))
wtail = hd;
}
else if (node == null)
node = new WNode(WMODE, p);
else if (node.prev != p)
node.prev = p;
else if (U.compareAndSwapObject(this, WTAIL, p, node)) {
p.next = node;
break;
}
}
for (int spins = -1;;) {
WNode h, np, pp; int ps;
if ((h = whead) == p) {
if (spins < 0)
spins = HEAD_SPINS;
else if (spins < MAX_HEAD_SPINS)
spins <<= 1;
for (int k = spins;;) { // spin at head
long s, ns;
if (((s = state) & ABITS) == 0L) {
if (U.compareAndSwapLong(this, STATE, s,
ns = s + WBIT)) {
whead = node;
node.prev = null;
return ns;
}
}
else if (LockSupport.nextSecondarySeed() >= 0 &&
--k <= 0)
break;
}
}
else if (h != null) { // help release stale waiters
WNode c; Thread w;
while ((c = h.cowait) != null) {
if (U.compareAndSwapObject(h, WCOWAIT, c, c.cowait) &&
(w = c.thread) != null)
U.unpark(w);
}
}
if (whead == h) {
if ((np = node.prev) != p) {
if (np != null)
(p = np).next = node; // stale
}
else if ((ps = p.status) == 0)
U.compareAndSwapInt(p, WSTATUS, 0, WAITING);
else if (ps == CANCELLED) {
if ((pp = p.prev) != null) {
node.prev = pp;
pp.next = node;
}
}
else {
long time; // 0 argument to park means no timeout
if (deadline == 0L)
time = 0L;
else if ((time = deadline - System.nanoTime()) <= 0L)
return cancelWaiter(node, node, false);
Thread wt = Thread.currentThread();
U.putObject(wt, PARKBLOCKER, this);
node.thread = wt;
if (p.status < 0 && (p != h || (state & ABITS) != 0L) &&
whead == h && node.prev == p)
U.park(false, time); // emulate LockSupport.park
node.thread = null;
U.putObject(wt, PARKBLOCKER, null);
if (interruptible && Thread.interrupted())
return cancelWaiter(node, node, true);
}
}
}
}