Pytorch模型加载读取

254 阅读1分钟

读取模型

打印模型结构

    model = Generator(3, 3)
    model_para = torch.load(path)
    model.load_state_dict(model_para)
    print(model)
    # print(model)输出的结果就是 print(model.state_dict)

输出:

  (model): Sequential(
    (0): ReflectionPad2d((3, 3, 3, 3))
    (1): Conv2d(3, 64, kernel_size=(7, 7), stride=(1, 1))
    (2): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
    (3): ReLU(inplace=True)
    (4): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
    (5): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
    (6): ReLU(inplace=True)
    (7): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
    (8): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
    (9): ReLU(inplace=True)
    (10): ResidualBlock(
      (conv_block): Sequential(
        (0): ReflectionPad2d((1, 1, 1, 1))
        (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
        (3): ReLU(inplace=True)
        (4): ReflectionPad2d((1, 1, 1, 1))
        (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
      )
    )
    (11): ResidualBlock(
      (conv_block): Sequential(
        (0): ReflectionPad2d((1, 1, 1, 1))
        (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
        (3): ReLU(inplace=True)
        (4): ReflectionPad2d((1, 1, 1, 1))
        (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
      )
    )
    (12): ResidualBlock(
      (conv_block): Sequential(
        (0): ReflectionPad2d((1, 1, 1, 1))
        (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
        (3): ReLU(inplace=True)
        (4): ReflectionPad2d((1, 1, 1, 1))
        (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
      )
    )
    (13): ResidualBlock(
      (conv_block): Sequential(
        (0): ReflectionPad2d((1, 1, 1, 1))
        (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
        (3): ReLU(inplace=True)
        (4): ReflectionPad2d((1, 1, 1, 1))
        (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
      )
    )
    (14): ResidualBlock(
      (conv_block): Sequential(
        (0): ReflectionPad2d((1, 1, 1, 1))
        (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
        (3): ReLU(inplace=True)
        (4): ReflectionPad2d((1, 1, 1, 1))
        (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
      )
    )
    (15): ResidualBlock(
      (conv_block): Sequential(
        (0): ReflectionPad2d((1, 1, 1, 1))
        (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
        (3): ReLU(inplace=True)
        (4): ReflectionPad2d((1, 1, 1, 1))
        (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
      )
    )
    (16): ResidualBlock(
      (conv_block): Sequential(
        (0): ReflectionPad2d((1, 1, 1, 1))
        (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
        (3): ReLU(inplace=True)
        (4): ReflectionPad2d((1, 1, 1, 1))
        (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
      )
    )
    (17): ResidualBlock(
      (conv_block): Sequential(
        (0): ReflectionPad2d((1, 1, 1, 1))
        (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
        (3): ReLU(inplace=True)
        (4): ReflectionPad2d((1, 1, 1, 1))
        (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
      )
    )
    (18): ResidualBlock(
      (conv_block): Sequential(
        (0): ReflectionPad2d((1, 1, 1, 1))
        (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
        (3): ReLU(inplace=True)
        (4): ReflectionPad2d((1, 1, 1, 1))
        (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
      )
    )
    (19): ConvTranspose2d(256, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
    (20): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
    (21): ReLU(inplace=True)
    (22): ConvTranspose2d(128, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
    (23): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
    (24): ReLU(inplace=True)
    (25): ReflectionPad2d((3, 3, 3, 3))
    (26): Conv2d(64, 3, kernel_size=(7, 7), stride=(1, 1))
    (27): Tanh()
  )
)>