leetcode_303 区域和检索 - 数组不可变

57 阅读1分钟

要求

给定一个整数数组  nums,求出数组从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点。

实现 NumArray 类:

NumArray(int[] nums) 使用数组 nums 初始化对象
int sumRange(int i, int j) 返回数组 nums 从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点(也就是 sum(nums[i], nums[i + 1], ... , nums[j]))  

示例:

输入:
["NumArray", "sumRange", "sumRange", "sumRange"]
[[[-2, 0, 3, -5, 2, -1]], [0, 2], [2, 5], [0, 5]]
输出:
[null, 1, -1, -3]

解释:
NumArray numArray = new NumArray([-2, 0, 3, -5, 2, -1]);
numArray.sumRange(0, 2); // return 1 ((-2) + 0 + 3)
numArray.sumRange(2, 5); // return -1 (3 + (-5) + 2 + (-1)) 
numArray.sumRange(0, 5); // return -3 ((-2) + 0 + 3 + (-5) + 2 + (-1))

核心代码

class NumArray:
    def __init__(self, nums: List[int]):
        if not nums:
            return None
        m = len(nums)
        n = m
        self.dp = [0 for _ in range(m)]
        self.dp[0] = nums[0]

        for i in range(1,m):
            self.dp[i] = self.dp[i - 1] + nums[i]

    def sumRange(self, left: int, right: int) -> int:
        if left == 0:
            return self.dp[right]
        else:
            return self.dp[right] - self.dp[left - 1]

# Your NumArray object will be instantiated and called as such:
# obj = NumArray(nums)
# param_1 = obj.sumRange(left,right)

image.png

解题思路:其实这是一道动态规划问题,我们使用一个列表来存储从第一位向后每一位的累计和,然后我们取left~right之间的和,就是用self.dp[right] - self.dp[left - 1],动态规划重在理解思路。