线程
实现线程方式
- 实现Runable接口
public class RunnableThread implements Runnable {
@Override
public void run() {
System.out.println('用实现Runnable接口实现线程');
}
}
第 1 种方式是通过实现 Runnable 接口实现多线程,如代码所示,首先通过 RunnableThread 类实现 Runnable 接口,然后重写 run() 方法,之后只需要把这个实现了 run() 方法的实例传到 Thread 类中就可以实现多线程
- 继承 Thread 类
public class ExtendsThread extends Thread {
@Override
public void run() {
System.out.println('用Thread类实现线程');
}
}
第 2 种方式是继承 Thread 类,如代码所示,与第 1 种方式不同的是它没有实现接口,而是继承 Thread 类,并重写了其中的 run() 方法。相信上面这两种方式你一定非常熟悉,并且经常在工作中使用它们。
- 线程池创建线程
过线程池创建线程。线程池确实实现了多线程,比如我们给线程池的线程数量设置成 10,那么就会有 10 个子线程来为我们工作,接下来,我们深入解析线程池中的源码,来看看线程池是怎么实现线程的?
static class DefaultThreadFactory implements ThreadFactory {
DefaultThreadFactory() {
SecurityManager s = System.getSecurityManager();
group = (s != null) ? s.getThreadGroup() :
Thread.currentThread().getThreadGroup();
namePrefix = "pool-" +
poolNumber.getAndIncrement() +
"-thread-";
}
public Thread newThread(Runnable r) {
Thread t = new Thread(group, r,
namePrefix + threadNumber.getAndIncrement(),
0);
if (t.isDaemon())
t.setDaemon(false);
if (t.getPriority() != Thread.NORM_PRIORITY)
t.setPriority(Thread.NORM_PRIORITY);
return t;
}
}
对于线程池而言,本质上是通过线程工厂创建线程的,默认采用 DefaultThreadFactory ,它会给线程池创建的线程设置一些默认值,比如:线程的名字、是否是守护线程,以及线程的优先级等。但是无论怎么设置这些属性,最终它还是通过 new Thread() 创建线程的 ,只不过这里的构造函数传入的参数要多一些,由此可以看出通过线程池创建线程并没有脱离最开始的那两种基本的创建方式,因为本质上还是通过 new Thread() 实现的。
- 有返回值的 Callable 创建线程
class CallableTask implements Callable<Integer> {
@Override
public Integer call() throws Exception {
return new Random().nextInt();
}
}
//创建线程池
ExecutorService service = Executors.newFixedThreadPool(10);
//提交任务,并用 Future提交返回结果
Future<Integer> future = service.submit(new CallableTask());
// FutureTask
Task task = new Task();
FutureTask<Integer> futureTask = new FutureTask<Integer>(task);
Future<?> submit = executorService.submit(futureTask);
第 4 种线程创建方式是通过有返回值的 Callable 创建线程,Runnable 创建线程是无返回值的,而 Callable 和与之相关的 Future、FutureTask,它们可以把线程执行的结果作为返回值返回,如代码所示,实现了 Callable 接口,并且给它的泛型设置成 Integer,然后它会返回一个随机数。
但是,无论是 Callable 还是 FutureTask,它们首先和 Runnable 一样,都是一个任务,是需要被执行的,而不是说它们本身就是线程。它们可以放到线程池中执行,如代码所示, submit() 方法把任务放到线程池中,并由线程池创建线程,不管用什么方法,最终都是靠线程来执行的,而子线程的创建方式仍脱离不了最开始讲的两种基本方式,也就是实现 Runnable 接口和继承 Thread 类。
其他创建方式
- 定时器 Timer
class TimerThread extends Thread {
//具体实现
}
剖析
实现线程只有一种方式
关于这个问题,我们先不聚焦为什么说创建线程只有一种方式,先认为有两种创建线程的方式,而其他的创建方式,比如线程池或是定时器,它们仅仅是在 new Thread() 外做了一层封装,如果我们把这些都叫作一种新的方式,那么创建线程的方式便会千变万化、层出不穷,比如 JDK 更新了,它可能会多出几个类,会把 new Thread() 重新封装,表面上看又会是一种新的实现线程的方式,透过现象看本质,打开封装后,会发现它们最终都是基于 Runnable 接口或继承 Thread 类实现的。
为什么说这两种方式本质上是一种呢?
@Override
public void run() {
if (target != null) {
target.run();
}
}
- 实现 Runnable 接口比继承 Thread 类实现线程要好
下面我们来对刚才说的两种实现线程内容的方式进行对比,也就是为什么说实现 Runnable 接口比继承 Thread 类实现线程要好?好在哪里呢?
首先,我们从代码的架构考虑,实际上,Runnable 里只有一个 run() 方法,它定义了需要执行的内容,在这种情况下,实现了 Runnable 与 Thread 类的解耦,Thread 类负责线程启动和属性设置等内容,权责分明。
第二点就是在某些情况下可以提高性能,使用继承 Thread 类方式,每次执行一次任务,都需要新建一个独立的线程,执行完任务后线程走到生命周期的尽头被销毁,如果还想执行这个任务,就必须再新建一个继承了 Thread 类的类,如果此时执行的内容比较少,比如只是在 run() 方法里简单打印一行文字,那么它所带来的开销并不大,相比于整个线程从开始创建到执行完毕被销毁,这一系列的操作比 run() 方法打印文字本身带来的开销要大得多,相当于捡了芝麻丢了西瓜,得不偿失。如果我们使用实现 Runnable 接口的方式,就可以把任务直接传入线程池,使用一些固定的线程来完成任务,不需要每次新建销毁线程,大大降低了性能开销。
第三点好处在于 Java 语言不支持双继承,如果我们的类一旦继承了 Thread 类,那么它后续就没有办法再继承其他的类,这样一来,如果未来这个类需要继承其他类实现一些功能上的拓展,它就没有办法做到了,相当于限制了代码未来的可拓展性。
综上所述,我们应该优先选择通过实现 Runnable 接口的方式来创建线程。
总结
创建线程只有一种方式,那就是构造一个Thread类;实现线程执行的内容有两种方式:1. 实现Runnable接口,2. 继承Thread类,重写Run方法。实现Runnable接口好处:1. 解耦2. 提高性能3. java不支持多继承,使用接口实现多继承
线程六种状态
就像生物从出生到长大、最终死亡的过程一样,线程也有自己的生命周期,在 Java 中线程的生命周期中一共有 6 种状态。
-
New(新创建)
-
Runnable(可运行)
-
Blocked(被阻塞)
-
Waiting(等待)
-
Timed Waiting(计时等待)
-
Terminated(被终止)
- 新建
New 表示线程被创建但尚未启动的状态:当我们用 new Thread() 新建一个线程时,如果线程没有开始运行 start() 方法,所以也没有开始执行 run() 方法里面的代码,那么此时它的状态就是 New。而一旦线程调用了 start(),它的状态就会从 New 变成 Runnable,也就是状态转换图中中间的这个大方框里的内容。
2.Runnable 可运行
Runable 状态对应操作系统线程状态中的两种状态,分别是 Running 和 Ready,也就是说,Java 中处于 Runnable 状态的线程有可能正在执行,也有可能没有正在执行,正在等待被分配 CPU 资源。
所以,如果一个正在运行的线程是 Runnable 状态,当它运行到任务的一半时,执行该线程的 CPU 被调度去做其他事情,导致该线程暂时不运行,它的状态依然不变,还是 Runnable,因为它有可能随时被调度回来继续执行任务。
3.阻塞状态
被阻塞、等待、计时等待 三种状态统称为阻塞状态
- Blocked 被阻塞
首先来看最简单的 Blocked,从箭头的流转方向可以看出,从 Runnable 状态进入 Blocked 状态只有一种可能,就是进入 synchronized 保护的代码时没有抢到 monitor 锁,无论是进入 synchronized 代码块,还是 synchronized方法,都是一样。
我们再往右看,当处于 Blocked 的线程抢到 monitor 锁,就会从 Blocked 状态回到Runnable 状态。
- Waiting 等待
Waiting 状态,线程进入 Waiting 状态有三种可能性。
1.没有设置Timeout参数的Object.wait()方法;
2.没有设置Timeout参数的Thread.join() 方法;
3.LockSupport.park()方法;
Blocked 仅仅针对 synchronized monitor 锁,可是在 Java 中还有很多其他的锁,比如 ReentrantLock,如果线程在获取这种锁时没有抢到该锁就会进入 Waiting 状态,因为本质上它执行了 LockSupport.park() 方法,所以会进入 Waiting 状态。同样,Object.wait() 和 Thread.join() 也会让线程进入 Waiting 状态;
Blocked 与 Waiting 的区别是 Blocked 在等待其他线程释放 monitor 锁,而 Waiting 则是在等待某个条件比如join的线程执行完毕,或者是notify()/notifyAll()
-Timed Waiting 限期等待
Waiting 上面是 Timed Waiting 状态,这两个状态是非常相似的,区别仅在于有没有时间限制,Timed Waiting 会等待超时,由系统自动唤醒,或者在超时前被唤醒信号唤醒。
以下情况会让线程进入 Timed Waiting 状态
1.设置了时间参数的 Thread.sleep(long millis) 方法;
2.设置了时间参数的 Object.wait(long timeout) 方法;
3.设置了时间参数的 Thread.join(long millis) 方法;
4.设置了时间参数的 LockSupport.parkNanos(long nanos) 方法和 LockSupport.parkUntil(long deadline) 方法。
如何进入这三种状态,我们再来看下如何从这三种状态流转到下一个状态。
1.想要从 Blocked 状态进入 Runnable 状态,要求线程获取 monitor 锁,而从 Waiting 状态流转到其他状态则比较特殊,因为首先 Waiting 是不限时的,也就是说无论过了多长时间它都不会主动恢复
2.只有当执行了 LockSupport.unpark(),或者 join 的线程运行结束,或者被中断时才可以进入 Runnable 状态。
3.如果其他线程调用 notify() 或 notifyAll()来唤醒它,它会直接进入 Blocked 状态,这是为什么呢?因为唤醒 Waiting 线程的线程如果调用 notify() 或 notifyAll(),要求必须首先持有该 monitor 锁,所以处于 Waiting 状态的线程被唤醒时拿不到该锁,就会进入 Blocked 状态,直到执行了 notify()/notifyAll() 的唤醒它的线程执行完毕并释放 monitor 锁,才可能轮到它去抢夺这把锁,如果它能抢到,就会从 Blocked 状态回到 Runnable 状态。
4.同样在 Timed Waiting 中执行 notify() 和 notifyAll() 也是一样的道理,它们会先进入 Blocked 状态,然后抢夺锁成功后,再回到 Runnable 状态。
5.当然对于 Timed Waiting 而言,如果它的超时时间到了且能直接获取到锁/join的线程运行结束/被中断/调用了LockSupport.unpark(),会直接恢复到 Runnable 状态,而无需经历 Blocked 状态。
- Terminated 终止
再来看看最后一种状态,Terminated 终止状态,要想进入这个状态有两种可能。
-
run() 方法执行完毕,线程正常退出。
-
出现一个没有捕获的异常,终止了 run() 方法,最终导致意外终止。
线程安全问题
在实际开发中经常会遇到线程不安全的情况
-
运行结果错误;
-
发布和初始化导致线程安全问题;
-
活跃性问题
运行结果错误
public class WrongResult {
volatile static int i;
public static void main(String[] args) throws InterruptedException {
Runnable r = new Runnable() {
@Override
public void run() {
for (int j = 0; j < 10000; j++) {
i++;
}
}
};
Thread thread1 = new Thread(r);
thread1.start();
Thread thread2 = new Thread(r);
thread2.start();
thread1.join();
thread2.join();
System.out.println(i);
}
}
CPU 的调度是以时间片为单位进行分配的,每个线程都可以得到一定量的时间片。但如果线程拥有的时间片耗尽,它将会被暂停执行并让出 CPU 资源给其他线程,这样就有可能发生线程安全问题。比如 i++ 操作,表面上看只是一行代码,但实际上它并不是一个原子操作,它的执行步骤主要分为三步,而且在每步操作之间都有可能被打断
-
第一个步骤是读取;
-
第二个步骤是增加;
-
第三个步骤是保存
根据箭头指向依次看,线程 1 首先拿到 i=1 的结果,然后进行 i+1 操作,但此时 i+1 的结果并没有保存下来,线程 1 就被切换走了,于是 CPU 开始执行线程 2,它所做的事情和线程 1 是一样的 i++ 操作,但此时我们想一下,它拿到的 i 是多少?实际上和线程 1 拿到的 i 的结果一样都是 1,为什么呢?因为线程 1 虽然对 i 进行了 +1 操作,但结果没有保存,所以线程 2 看不到修改后的结果。
然后假设等线程 2 对 i 进行 +1 操作后,又切换到线程 1,让线程 1 完成未完成的操作,即将 i+1 的结果 2 保存下来,然后又切换到线程 2 完成 i=2 的保存操作,虽然两个线程都执行了对 i 进行 +1 的操作,但结果却最终保存了 i=2 的结果,而不是我们期望的 i=3,这样就发生了线程安全问题,导致了数据结果错误,这也是最典型的线程安全问题
发布和初始化导致线程安全问题
public class WrongInit {
private Map<Integer, String> students;
public WrongInit() {
new Thread(new Runnable() {
@Override
public void run() {
students = new HashMap<>();
students.put(1, "王小美");
students.put(2, "钱二宝");
students.put(3, "周三");
students.put(4, "赵四");
}
}).start();
}
public Map<Integer, String> getStudents() {
return students;
}
public static void main(String[] args) throws InterruptedException {
WrongInit multiThreadsError6 = new WrongInit();
System.out.println(multiThreadsError6.getStudents().get(1));
}
}
只有当线程运行完 run() 方法中的全部赋值操作后,4 名同学的全部信息才算是初始化完毕,可是我们看在主函数 mian() 中,初始化 WrongInit 类之后并没有进行任何休息就直接打印 1 号同学的信息,试想这个时候程序会出现什么情况?实际上会发生空指针异常。
因为 students 这个成员变量是在构造函数中新建的线程中进行的初始化和赋值操作,而线程的启动需要一定的时间,但是我们的 main 函数并没有进行等待就直接获取数据,导致 getStudents 获取的结果为 null,这就是在错误的时间或地点发布或初始化造成的线程安全问题。
活跃性问题
第三种线程安全问题统称为活跃性问题,最典型的有三种,分别为死锁、活锁和饥饿。
什么是活跃性问题呢,活跃性问题就是程序始终得不到运行的最终结果,相比于前面两种线程安全问题带来的数据错误或报错,活跃性问题带来的后果可能更严重,比如发生死锁会导致程序完全卡死,无法向下运行。