An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.
Figure 1
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.
Output Specification:
For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop
Sample Output:
3 4 2 6 5 1
代码:
#include<iostream>
#include<stack>
#include<string>
#include<stdio.h>
#include<malloc.h>
using namespace std;
typedef struct TreeNode* Tree;
struct TreeNode {
string data;
Tree left; // 左子树
Tree right; // 右子树
};
// 初始化一个树结点
Tree create() {
Tree T;
T = (Tree)malloc(sizeof(struct TreeNode));
T->left = NULL;
T->right = NULL;
return T;
}
// 根据中序遍历整理出这棵树
Tree restore(Tree T) {
int n;
string str;
stack<Tree> s;
Tree node = T;
bool flag = false;
string value;
scanf("%d\n", &n);
getline(cin, str);
value = str.substr(5); //
node->data = value;
// 根结点入栈
s.push(node);
for (int i = 1; i < 2 * n; i++) {
getline(cin, str);
if (str == "Pop") {// 如果是 pop 操作
node = s.top();
s.pop();
}
else { // push
value = str.substr(5); // 从第五个开始截取
Tree tmp = create();
tmp->data = value;
if (!node->left) {// 如果左儿子空,新结点就是左儿子
node->left = tmp;
node = node->left;
}
else if (!node->right) { // 如果右儿子空,新结点就是右儿子
node->right = tmp;
node = node->right;
}
s.push(tmp);
}
}
return T;
}
// 后序递归遍历
void bl(Tree T, bool& flag) {
if (T) {
bl(T->left, flag);
bl(T->right, flag);
if (!flag)
flag = true;
else
cout << " ";
cout << T->data;
}
}
int main() {
Tree T;
bool flag = false;
string str;
T = create();
T = restore(T);
bl(T, flag);
return 0;
}