20. 有效的括号
难度简单2748
给定一个只包括 '(',')','{','}','[',']' 的字符串 s ,判断字符串是否有效。
有效字符串需满足:
- 左括号必须用相同类型的右括号闭合。
- 左括号必须以正确的顺序闭合。
示例 1:
输入: s = "()"
输出: true
示例 2:
输入: s = "()[]{}"
输出: true
示例 3:
输入: s = "(]"
输出: false
示例 4:
输入: s = "([)]"
输出: false
示例 5:
输入: s = "{[]}"
输出: true
提示:
1 <= s.length <= 104s仅由括号'()[]{}'组成
class Solution {
public boolean isValid(String s) {
Deque<Character> deque = new LinkedList<>();
char ch;
for (int i = 0; i < s.length(); i++) {
ch = s.charAt(i);
//碰到左括号,就把相应的右括号入栈
if (ch == '(') {
deque.push(')');
}else if (ch == '{') {
deque.push('}');
}else if (ch == '[') {
deque.push(']');
} else if (deque.isEmpty() || deque.peek() != ch) {
return false;
}else {//如果是右括号判断是否和栈顶元素匹配
deque.pop();
}
}
//最后判断栈中元素是否匹配
return deque.isEmpty();
}
}
1047. 删除字符串中的所有相邻重复项
给出由小写字母组成的字符串 S,重复项删除操作会选择两个相邻且相同的字母,并删除它们。
在 S 上反复执行重复项删除操作,直到无法继续删除。
在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。
示例:
输入: "abbaca"
输出: "ca"
解释:
例如,在 "abbaca" 中,我们可以删除 "bb" 由于两字母相邻且相同,这是此时唯一可以执行删除操作的重复项。之后我们得到字符串 "aaca",其中又只有 "aa" 可以执行重复项删除操作,所以最后的字符串为 "ca"。
提示:
1 <= S.length <= 20000S仅由小写英文字母组成。
class Solution {
public String removeDuplicates(String s) {
// 将 res 当做栈
StringBuffer res = new StringBuffer();
// top为 res 的长度
int top = -1;
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
// 当 top > 0,即栈中有字符时,当前字符如果和栈中字符相等,弹出栈顶字符,同时 top--
if (top >= 0 && res.charAt(top) == c) {
res.deleteCharAt(top);
top--;
// 否则,将该字符 入栈,同时top++
} else {
res.append(c);
top++;
}
}
return res.toString();
}
}
150. 逆波兰表达式求值
根据 逆波兰表示法,求表达式的值。
有效的算符包括 +、-、*、/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
说明:
- 整数除法只保留整数部分。
- 给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例 1:
输入: tokens = ["2","1","+","3","*"]
输出: 9
解释: 该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入: tokens = ["4","13","5","/","+"]
输出: 6
解释: 该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入: tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出: 22
解释:
该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
提示:
1 <= tokens.length <= 104tokens[i]要么是一个算符("+"、"-"、"*"或"/"),要么是一个在范围[-200, 200]内的整数
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
- 平常使用的算式则是一种中缀表达式,如
( 1 + 2 ) * ( 3 + 4 )。 - 该算式的逆波兰表达式写法为
( ( 1 2 + ) ( 3 4 + ) * )。
逆波兰表达式主要有以下两个优点:
- 去掉括号后表达式无歧义,上式即便写成
1 2 + 3 4 + *也可以依据次序计算出正确结果。 - 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。
class Solution {
public int evalRPN(String[] tokens) {
Deque<Integer> stack = new LinkedList<Integer>();
int n = tokens.length;
for (int i = 0; i < n; i++) {
String token = tokens[i];
if (isNumber(token)) {
stack.push(Integer.parseInt(token));
} else {
int num2 = stack.pop();
int num1 = stack.pop();
switch (token) {
case "+":
stack.push(num1 + num2);
break;
case "-":
stack.push(num1 - num2);
break;
case "*":
stack.push(num1 * num2);
break;
case "/":
stack.push(num1 / num2);
break;
default:
}
}
}
return stack.pop();
}
232. 用栈实现队列
请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty):
实现 MyQueue 类:
void push(int x)将元素 x 推到队列的末尾int pop()从队列的开头移除并返回元素int peek()返回队列开头的元素boolean empty()如果队列为空,返回true;否则,返回false
说明:
- 你只能使用标准的栈操作 —— 也就是只有
push to top,peek/pop from top,size, 和is empty操作是合法的。 - 你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。
进阶:
- 你能否实现每个操作均摊时间复杂度为
O(1)的队列?换句话说,执行n个操作的总时间复杂度为O(n),即使其中一个操作可能花费较长时间。
示例:
输入:
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 1, 1, false]
解释:
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false
提示:
1 <= x <= 9- 最多调用
100次push、pop、peek和empty - 假设所有操作都是有效的 (例如,一个空的队列不会调用
pop或者peek操作)
class MyQueue {
Stack<Integer> stack1;
Stack<Integer> stack2;
/** Initialize your data structure here. */
public MyQueue() {
stack1 = new Stack<>(); // 负责进栈
stack2 = new Stack<>(); // 负责出栈
}
/** Push element x to the back of queue. */
public void push(int x) {
stack1.push(x);
}
/** Removes the element from in front of queue and returns that element. */
public int pop() {
dumpStack1();
return stack2.pop();
}
/** Get the front element. */
public int peek() {
dumpStack1();
return stack2.peek();
}
/** Returns whether the queue is empty. */
public boolean empty() {
return stack1.isEmpty() && stack2.isEmpty();
}
// 如果stack2为空,那么将stack1中的元素全部放到stack2中
private void dumpStack1(){
if (stack2.isEmpty()){
while (!stack1.isEmpty()){
stack2.push(stack1.pop());
}
}
}
}
/**
* Your MyQueue object will be instantiated and called as such:
* MyQueue obj = new MyQueue();
* obj.push(x);
* int param_2 = obj.pop();
* int param_3 = obj.peek();
* boolean param_4 = obj.empty();
*/
225. 用队列实现栈
请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push、top、pop 和 empty)。
实现 MyStack 类:
void push(int x)将元素 x 压入栈顶。int pop()移除并返回栈顶元素。int top()返回栈顶元素。boolean empty()如果栈是空的,返回true;否则,返回false。
注意:
- 你只能使用队列的基本操作 —— 也就是
push to back、peek/pop from front、size和is empty这些操作。 - 你所使用的语言也许不支持队列。 你可以使用 list (列表)或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。
示例:
输入:
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 2, 2, false]
解释:
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // 返回 2
myStack.pop(); // 返回 2
myStack.empty(); // 返回 False
提示:
1 <= x <= 9- 最多调用
100次push、pop、top和empty - 每次调用
pop和top都保证栈不为空
进阶: 你能否实现每种操作的均摊时间复杂度为 O(1) 的栈?换句话说,执行 n 个操作的总时间复杂度 O(n) ,尽管其中某个操作可能需要比其他操作更长的时间。你可以使用两个以上的队列。
class MyStack {
Queue<Integer> queue1; // 和栈中保持一样元素的队列
Queue<Integer> queue2; // 辅助队列
/** Initialize your data structure here. */
public MyStack() {
queue1 = new LinkedList<>();
queue2 = new LinkedList<>();
}
/** Push element x onto stack. */
public void push(int x) {
queue2.offer(x); // 先放在辅助队列中
while (!queue1.isEmpty()){
queue2.offer(queue1.poll());
}
Queue<Integer> queueTemp;
queueTemp = queue1;
queue1 = queue2;
queue2 = queueTemp; // 最后交换queue1和queue2,将元素都放到queue1中
}
/** Removes the element on top of the stack and returns that element. */
public int pop() {
return queue1.poll(); // 因为queue1中的元素和栈中的保持一致,所以这个和下面两个的操作只看queue1即可
}
/** Get the top element. */
public int top() {
return queue1.peek();
}
/** Returns whether the stack is empty. */
public boolean empty() {
return queue1.isEmpty();
}
}
239. 滑动窗口最大值
给你一个整数数组 nums,有一个大小为 k **的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回滑动窗口中的最大值。
示例 1:
输入: nums = [1,3,-1,-3,5,3,6,7], k = 3
输出: [3,3,5,5,6,7]
解释:
滑动窗口的位置 最大值
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
示例 2:
输入: nums = [1], k = 1
输出: [1]
示例 3:
输入: nums = [1,-1], k = 1
输出: [1,-1]
示例 4:
输入: nums = [9,11], k = 2
输出: [11]
示例 5:
输入: nums = [4,-2], k = 2
输出: [4]
提示:
1 <= nums.length <= 105-104 <= nums[i] <= 1041 <= k <= nums.length
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
if(nums == null || nums.length < 2) return nums;
// 双端队列 保存当前窗口最大值的数组位置 保证队列中数组位置的数值按从大到小排序
LinkedList<Integer> queue = new LinkedList();
// 结果数组
int[] result = new int[nums.length-k+1];
for(int i = 0;i < nums.length;i++){
// 保证从大到小 如果前面数小则需要依次弹出,直至满足要求
while(!queue.isEmpty() && nums[queue.peekLast()] <= nums[i]){
queue.pollLast();
}
// 添加当前值对应的数组下标
queue.addLast(i);
// 判断当前队列中队首的值是否有效
if(queue.peek() <= i-k){
queue.poll();
}
// 当窗口长度为k时 保存当前窗口中最大值
if(i+1 >= k){
result[i+1-k] = nums[queue.peek()];
}
}
return result;
}
}
转载自:
[编程文青李狗蛋:mp.weixin.qq.com/s/4D0FQiJMJ…]