leetcode_598 范围求和 II

103 阅读1分钟

要求

给定一个初始元素全部为 0,大小为 m*n 的矩阵 M 以及在 M 上的一系列更新操作。

操作用二维数组表示,其中的每个操作用一个含有两个正整数 a 和 b 的数组表示,含义是将所有符合 0 <= i < a 以及 0 <= j < b 的元素 M[i][j] 的值都增加 1。

在执行给定的一系列操作后,你需要返回矩阵中含有最大整数的元素个数

示例 1:

输入: 
m = 3, n = 3
operations = [[2,2],[3,3]]
输出: 4
解释: 
初始状态, M = 
[[0, 0, 0],
 [0, 0, 0],
 [0, 0, 0]]

执行完操作 [2,2] 后, M = 
[[1, 1, 0],
 [1, 1, 0],
 [0, 0, 0]]

执行完操作 [3,3] 后, M = 
[[2, 2, 1],
 [2, 2, 1],
 [1, 1, 1]]

M 中最大的整数是 2, 而且 M 中有4个值为2的元素。因此返回 4。

注意:

m 和 n 的范围是 [1,40000]。
a 的范围是 [1,m],b 的范围是 [1,n]。
操作数目不超过 10000。

核心代码

class Solution:
    def maxCount(self, m: int, n: int, ops: List[List[int]]) -> int:
        min1,min2 = m,n
        for op in ops:
            min1 = min(min1,op[0])
            min2 = min(min2,op[1])
        return min1 * min2

image.png

解题思路:直接找ops里两个方向上的最小值就好了。因为区域一定是一个矩形,计算矩形区域内元素的个数,我们的矩形取双边最小。