要求
给定一个二叉树,检查它是否是镜像对称的。
例如,二叉树 [1,2,2,3,4,4,3] 是对称的。
1
/ \
2 2
/ \ / \
3 4 4 3
但是下面这个 [1,2,2,null,3,null,3] 则不是镜像对称的:
1
/ \
2 2
\ \
3 3
核心代码
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def isSymmetric(self, root: TreeNode) -> bool:
queue = [root]
while queue:
next_queue = list()
layer = list()
for node in queue:
if not node:
layer.append(None)
continue
next_queue.append(node.left)
next_queue.append(node.right)
layer.append(node.val)
if layer != layer[::-1]:
return False
queue = next_queue
return True
另一解法
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def isSymmetric(self, root: TreeNode) -> bool:
def check(node1,node2):
if not node1 and not node2:
return True
elif not node1 or not node2:
return False
if node1.val != node2.val:
return False
return check(node1.left,node2.right) and check(node1.right,node2.left)
return check(root,root)
第三种解法
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def isSymmetric(self, root: TreeNode) -> bool:
def check(node1,node2):
if not node1 and not node2:
return True
elif not node1 or not node2:
return False
return node1.val == node2.val and check(node1.left,node2.right) and check(node1.right,node2.left)
return check(root,root)
解题思路:第一种解法,我们使用层次遍历,将层次的值进行翻转,看和层次的值是否相同,相同此层就是对称的,否则整棵树都不对称,层次遍历所有层,都是对称的,整棵树也是对称的。第二种解法:我们使用递归的方式进行比较,核心思想就是两个node一左一右地对比是不是一样。第三种解法:是第二种解法的简便写法,将值的判断和node的左右节点的判断放到了一起,简化代码。