一 简介
随着信息技术和互联网的发展, 我们已经步入了一个信息过载的时代,这个时代,无论是信息消费者还是信息生产者都遇到了很大的挑战: 信息消费者:如何从大量的信息中找到自己感兴趣的信息? 信息生产者:如何让自己生产的信息脱颖而出, 受到广大用户的关注? 为了解决这个矛盾, 推荐系统应时而生, 并飞速前进,在用户和信息之间架起了一道桥梁,一方面帮助用户发现对自己有价值的信息, 一方面让信息能够展现在对它感兴趣的用户前面。 推荐系统近几年有了深度学习的助推发展之势迅猛, 从前深度学习的传统推荐模型(协同过滤,矩阵分解,LR, FM, FFM, GBDT)到深度学习的浪潮之巅(DNN, Deep Crossing, DIN, DIEN, Wide&Deep, Deep&Cross, DeepFM, AFM, NFM, PNN, FNN, DRN), 现在正无时无刻不影响着大众的生活。
推荐系统通过分析用户的历史行为给用户的兴趣建模, 从而主动给用户推荐给能够满足他们兴趣和需求的信息, 能够真正的“懂你”。 想上网购物的时候, 推荐系统在帮我们挑选商品, 想看资讯的时候, 推荐系统为我们准备了感兴趣的新闻, 想学习充电的时候, 推荐系统为我们提供最合适的课程, 想消遣放松的时候, 推荐系统为我们奉上欲罢不能的短视频…, 所以当我们淹没在信息的海洋时, 推荐系统正在拨开一层层波浪, 为我们追寻多姿多彩的生活!
所谓协同过滤(Collaborative Filtering)算法, 基本思想是根据用户之前的喜好以及其他兴趣相近的用户的选择来给用户推荐物品(基于对用户历史行为数据的挖掘发现用户的喜好偏向, 并预测用户可能喜好的产品进行推荐), 一般是仅仅基于用户的行为数据(评价、购买、下载等), 而不依赖于项的任何附加信息(物品自身特征)或者用户的任何附加信息(年龄, 性别等)。目前应用比较广泛的协同过滤算法是基于邻域的方法, 而这种方法主要有下面两种算法:
基于用户的协同过滤算法(UserCF): 给用户推荐和他兴趣相似的其他用户喜欢的产品 基于物品的协同过滤算法(ItemCF): 给用户推荐和他之前喜欢的物品相似的物品
二. 基于用户的协同过滤
基于用户的协同过滤(UserCF), 当一个用户A需要个性化推荐的时候, 我们可以先找到和他有相似兴趣的其他用户, 然后把那些用户喜欢的, 而用户A没有听说过的物品推荐给A。 所以基于用户的协同过滤算法主要包括两个步骤:
- 找到和目标用户兴趣相似的集合
- 找到这个集合中的用户喜欢的, 且目标用户没有听说过的物品推荐给用户。