1. 二叉树和二叉搜索树
二叉树中的的节点最后只能有两个节点:一个是左节点,一个是右节点。二叉树搜索树(BST)是二叉树的一种,但是只允许在左节点存储比父节点小的值,只允许右节点存储比父节点大的值。
1.1 二叉搜索树的实现
const Compare = {
LESS_THAN: -1,
BIGGER_THAN: 1,
EQUALS: 0
};
function defaultCompare(a, b) {
if (a === b) {
return Compare.EQUALS;
}
return a < b ? Compare.LESS_THAN : Compare.BIGGER_THAN;
}
class Node {
constructor(key) {
this.key = key;
this.left = undefined;
this.right = undefined;
}
toString() {
return `${this.key}`;
}
}
class BinarySearchTree {
constructor(compareFn = defaultCompare) {
this.compareFn = compareFn;
this.root = undefined;
}
//插入节点
insert(key) {
if (this.root == null) {
this.root = new Node(key);
} else {
this.insertNode(this.root, key);
}
}
insertNode(node, key) {
if (this.compareFn(key, node.key) === Compare.LESS_THAN) {
if (node.left == null) {
node.left = new Node(key);
} else {
this.insertNode(node.left, key);
}
} else if (node.right == null) {
node.right = new Node(key);
} else {
this.insertNode(node.right, key);
}
}
getRoot() {
return this.root;
}
search(key) {
return this.searchNode(this.root, key);
}
searchNode(node, key) {
if (node == null) {
return false;
}
if (this.compareFn(key, node.key) === Compare.LESS_THAN) {
return this.searchNode(node.left, key);
} if (this.compareFn(key, node.key) === Compare.BIGGER_THAN) {
return this.searchNode(node.right, key);
}
return true;
}
//中序遍历(节点从小到大访问)
inOrderTraverse(callback) {
this.inOrderTraverseNode(this.root, callback);
}
inOrderTraverseNode(node, callback) {
if (node != null) {
this.inOrderTraverseNode(node.left, callback);
callback(node.key);
this.inOrderTraverseNode(node.right, callback);
}
}
//先序遍历
preOrderTraverse(callback) {
this.preOrderTraverseNode(this.root, callback);
}
preOrderTraverseNode(node, callback) {
if (node != null) {
callback(node.key);
this.preOrderTraverseNode(node.left, callback);
this.preOrderTraverseNode(node.right, callback);
}
}
//后序遍历(先访问左节点,然后访问右节点,最后访问顶点)
postOrderTraverse(callback) {
this.postOrderTraverseNode(this.root, callback);
}
postOrderTraverseNode(node, callback) {
if (node != null) {
this.postOrderTraverseNode(node.left, callback);
this.postOrderTraverseNode(node.right, callback);
callback(node.key);
}
}
//找最小值
min() {
return this.minNode(this.root);
}
minNode(node) {
let current = node;
while (current != null && current.left != null) {
current = current.left;
}
return current;
}
//找最大值
max() {
return this.maxNode(this.root);
}
maxNode(node) {
let current = node;
while (current != null && current.right != null) {
current = current.right;
}
return current;
}
//删除节点
remove(key) {
this.root = this.removeNode(this.root, key);
}
removeNode(node, key) {
if (node == null) {
return undefined;
}
//找到要删除的节点
if (this.compareFn(key, node.key) === Compare.LESS_THAN) {
node.left = this.removeNode(node.left, key);
return node;
} if (this.compareFn(key, node.key) === Compare.BIGGER_THAN) {
node.right = this.removeNode(node.right, key);
return node;
}
// case 1 叶子节点
if (node.left == null && node.right == null) {
node = undefined;
return node;
}
// case 2 只有一个子节点
if (node.left == null) {
node = node.right;
return node;
} if (node.right == null) {
node = node.left;
return node;
}
// case 3 有两个子节点
//找到右边最小的节点
const aux = this.minNode(node.right);
//将要删除的节点替换成aux
node.key = aux.key;
node.right = this.removeNode(node.right, aux.key);
return node;
}
}