- normal
a2+b2−16=0 then a2+b2=16
弦长问题
-
normal
let AB:y=x+3then Δ=4⋅4⋅1⋅1(5−3)=32then ∣AB∣=2532=58
-
normal
let l:x=ty+m A(x1,y1) B(x2,y2)∵ tangency∴ m2=1+t2then Δ=4⋅4⋅1⋅1(4+t2−m2)=48then ∣AB∣=1+t24+t248=43⋅(1+t2)2+31+t2≤2
面积问题
-
normal
S=21d⋅PQy=kx−2→d=1+k22PQ=1+k24k2+1ΔΔ=4⋅4⋅1⋅1(4k2+1−4)S=4⋅4k2+14k2−3=4⋅(4k2−3)2+44k2−3=44k2−3+4k2−341≤1
-
hard
∣AB∣=1+k22k2+1Δ1∣CD∣=1+k22k2+1Δ2→Δ1=Δ24⋅2⋅1⋅1((2k2+1)−m12)=4⋅2⋅1⋅1((2k2+1)−m22)→m1=−m2let m1=m, then m2=−mh=1+k22∣m∣→S=2∣m∣2k2+1Δ=422k2+1∣m∣2k2+1−m2≤422k2+12m2+2k2+1−m2=22
- 面积的两种表示方式,一个是分割法,一个是直接底乘以高。
- 一次比二次的函数求最值。
平面向量综合
这里不妨设两个交点A(x1,y1),B(x2,y2)
-
normal
let AB:y=kx+2Δ>0 that means 4k2+1−4>0→k2>43x1x2+y1y2=(k2+1)x1x2+2k(x1+x2)+4>0x1+x2=4k2+1−2⋅k⋅4⋅2x1x2=4k2+14(4−1)→k2<4overall k∈(−2,−23)∪(23,2)
-
noraml
GA=(my1+45,y1)GB=(my2+45,y2)GA⋅GB=(m2+1)y1y2+45m(y1+y2)+1625y1+y2=4+2m24my1+y2=4+2m2−6then GA⋅GB=4+2m2817m2+41>0■
-
点评一下:这里面第一步难的是转化成∠MBP为锐角来做,这是第一个难点或者说是套路,第二个套路就是这里面设点的坐标设的是M,虽然是有两个参量,如果设P点的话,这道题基本就无了,两个套路点,好好把握。
let M(x0,y0)then AM:x+2y=x0+2y0let xp=4then yp=x0+26y0then BM⋅BP=(x0−2,y0)(2,x0+26y0)=x0+26y02+2x02−8we note that:y02=3(1−4x02)then BM⋅BP=25(2−x0)>0■
-
常规题
let M(x1,y1) N(x2,y2)then MB:xy+2=x1y1+2let yG=1then xG=y1+23x1we note that AGN collinear∴kAG=kANin other wordsy1+23x1−1=x2y2−2in addition:y=kx+4Bring in,simplify:4kx1x2+6(x1+x2)=0x1+x2=8k2+4−64kx1x2=8k2+496Bring in valid■
动直线定点
点评:套路就是一定要去设这条直线的方程,而不要去设其它的方程
-
normal
let A(x1,y1) B(x2,y2)AB:y=kx+bwe note that kCA+kCB=x1kx1+b−1+x2kx2+b−1=−1simplify (2k+1)x1x2+(b−1)(x1+x2)=0x1+x2=4k2+1−8kbx1x2=4k2+14(b2−1)then 2kb−2k+b2−1=(2k+b+1)(b−1)=0→2k+b+1=0overall (2,−1)■
-
normal
let A(x1,y1) B(x2,y2)AB:y=kx+bwe note that (x1−2,y1)⋅(x2−2,y2)=0simplify (k2+1)x1x2+(bk−2)(x1+x2)+4+b2=0x1+x2=4k2+3−8kbx1x2=4k2+34(b2−3)then 4k2+16kb+7b2=0then 2k+b=0(quit) or 2k+7b=0(72,0)■
-
normal
let P′(x1,y1) Q(x2,y2)P′Q:y=kx+bwe note that PQR collinearthat means x2+x2k(x1−x2)=x1y1−1simplify 2kx1x2+(b−1)(x1+x2)=0x1+x2=4k2+2−8kbx1x2=4k2+24(b2−2)then k(b−2)=0 then b=2(0,2)■