二十二 机器学习之逻辑回归3

145 阅读3分钟

本文已参与「掘力星计划」,赢取创作大礼包,挑战创作激励金。
小知识,大挑战!本文正在参与“程序员必备小知识”创作活动。

一 正则化

  • L1正则化和L2正则化虽然都可以控制过拟合,但它们的效果并不相同。当正则化强度逐渐增大(即C逐渐变小),参数0的取值会逐渐变小,但L1正则化会将参数压缩为0,L2正则化只会让参数尽量小,不会取到0。
  • 在L1正则化在逐渐加强的过程中,携带信息量小的、对模型贡献不大的特征的参数,会比携带大量信息的、对模型有巨大贡献的特征的参数更快地变成O,所以L1正则化本质是一个特征选择的过程,掌管了参数的"稀疏性"。L1正则化越强,参数向量中就越多的参数为0,参数就越稀疏,选出来的特征就越少,以此来防止过拟合。因此,如果特征量很大,数据维度很高,我们会倾向于使用L1正则化。由于L1正则化的这个性质,逻辑回归的特征选择可以由Embedded嵌入法来完成。
  • 相对的,L2正则化在加强的过程中,会尽量让每个特征对模型都有一些小的贡献,但携带信息少,对模型贡献不大 的特征的参数会非常接近于0。通常来说,如果我们的主要目的只是为了防止过拟合,选择L2正则化就足够了。但 是如果选择L2正则化后还是过拟合,模型在未知数据集上的效果表现很差,就可以考虑L1正则化。 而两种正则化下C的取值,都可以通过学习曲线来进行调整。 建立两个逻辑回归,L1正则化和L2正则化的差别就一目了然了:
from sklearn.linear_model import LogisticRegression as LR
from sklearn.datasets import load_breast_cancer
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score#精确性分数
 
data = load_breast_cancer()#乳腺癌数据集
X = data.data
y = data.target
 
X.data.shape#(569, 30)
 
lrl1 = LR(penalty="l1",solver="liblinear",C=0.5,max_iter=1000)
 
lrl2 = LR(penalty="l2",solver="liblinear",C=0.5,max_iter=1000)
 
#逻辑回归的重要属性coef_,查看每个特征所对应的参数
lrl1 = lrl1.fit(X,y)
lrl1.coef_
 
(lrl1.coef_ != 0).sum(axis=1)#array([10])    30个特征中有10个特征的系数不为0
 
lrl2 = lrl2.fit(X,y)
lrl2.coef_

image.png 可以看见,当我们选择L1正则化的时候,许多特征的参数都被设置为了O,这些特征在真正建模的时候,就不会出现在我们的模型当中了,而L2正则化则是对所有的特征都给出了参数。 究竟哪个正则化的效果更好呢?还是都差不多?

l1 = []
l2 = []
l1test = []
l2test = []
 
Xtrain, Xtest, Ytrain, Ytest = train_test_split(X,y,test_size=0.3,random_state=420)
 
for i in np.linspace(0.05,1.5,19):
    lrl1 = LR(penalty="l1",solver="liblinear",C=i,max_iter=1000)
    lrl2 = LR(penalty="l2",solver="liblinear",C=i,max_iter=1000)
    
    lrl1 = lrl1.fit(Xtrain,Ytrain)
    l1.append(accuracy_score(lrl1.predict(Xtrain),Ytrain))
    l1test.append(accuracy_score(lrl1.predict(Xtest),Ytest))
    lrl2 = lrl2.fit(Xtrain,Ytrain)
    l2.append(accuracy_score(lrl2.predict(Xtrain),Ytrain))
    l2test.append(accuracy_score(lrl2.predict(Xtest),Ytest))
 
graph = [l1,l2,l1test,l2test]
color = ["green","black","lightgreen","gray"]
label = ["L1","L2","L1test","L2test"]    
 
plt.figure(figsize=(6,6))
for i in range(len(graph)):
    plt.plot(np.linspace(0.05,1.5,19),graph[i],color[i],label=label[i])
plt.legend(loc=4) #图例的位置在哪里?4表示,右下角
plt.show()

image.png