策略模式

143 阅读4分钟

小知识,大挑战!本文正在参与“程序员必备小知识”创作活动

有各种鸭子(比如 野鸭、北京鸭、水鸭等, 鸭子有各种行为,比如 叫、飞行等) 显示鸭子的信息

我们传统的解决方式

代码十分简单,就不做过多解释

public abstract class Duck {

	public Duck() {
	
	}

	public abstract void display();//显示鸭子信息
	
	public void quack() {
		System.out.println("鸭子嘎嘎叫~~");
	}
	
	public void swim() {
		System.out.println("鸭子会游泳~~");
	}
	
	public void fly() {
		System.out.println("鸭子会飞翔~~~");
	}
	
}

实现类大体相似我们只列举几种

public class WildDuck extends Duck {

	@Override
	public void display() {
		// TODO Auto-generated method stub
		System.out.println(" 这是野鸭 ");
	}

}



public class PekingDuck extends Duck {

	@Override
	public void display() {
		// TODO Auto-generated method stub
		System.out.println("~~北京鸭~~~");
	}
	
	//因为北京鸭不能飞翔,因此需要重写fly
	@Override
	public void fly() {
		// TODO Auto-generated method stub
		System.out.println("北京鸭不能飞翔");
	}

}

其它鸭子,都继承了Duck类,所以fly让所有子类都会飞了,这是不正确的

上面说的1 的问题,其实是继承带来的问题:对类的局部改动,尤其超类的局部改 动,会影响其他部分。会有溢出效应

为了改进1问题,我们可以通过覆盖fly 方法来解决 => 覆盖解决

问题又来了,如果我们有一个玩具鸭子ToyDuck, 这样就需要ToyDuck去覆盖Duck 的所有实现的方法

策略模式(Strategy Pattern)中,定义算法族,分别封装起来,让他们之间可以 互相替换,此模式让算法的变化独立于使用算法的客户

这算法体现了几个设计原则,第一、把变化的代码从不变的代码中分离出来; 第二、针对接口编程而不是具体类(定义了策略接口);第三、多用组合/聚合, 少用继承(客户通过组合方式使用策略)。

从上图可以看到,客户context 有成员变量strategy或者其他的策略接口 ,至于需要使用到哪个策略,我们可以在构造器中指定.

根据类图我们最先是两个策略接口

public interface FlyBehavior {
	
	void fly(); // 子类具体实现
}

实现类

public class GoodFlyBehavior implements FlyBehavior {

	@Override
	public void fly() {
		// TODO Auto-generated method stub
		System.out.println(" 飞翔技术高超 ~~~");
	}

}

public class BadFlyBehavior implements FlyBehavior {

	@Override
	public void fly() {
		// TODO Auto-generated method stub
		System.out.println(" 飞翔技术一般 ");
	}

}

public class NoFlyBehavior implements FlyBehavior{

	@Override
	public void fly() {
		// TODO Auto-generated method stub
		System.out.println(" 不会飞翔  ");
	}

}

另一个策略接口与实现大体相似,我们就不再写了,编写我们鸭子抽象类

public abstract class Duck {

	//属性, 策略接口
	FlyBehavior flyBehavior;
	//其它属性<->策略接口
	QuackBehavior quackBehavior;
	
	public Duck() {
	
	}

	public abstract void display();//显示鸭子信息
	
	public void quack() {
		System.out.println("鸭子嘎嘎叫~~");
	}
	
	public void swim() {
		System.out.println("鸭子会游泳~~");
	}
	
	public void fly() {
		
		//改进
		if(flyBehavior != null) {
			flyBehavior.fly();
		}
	}

	public void setFlyBehavior(FlyBehavior flyBehavior) {
		this.flyBehavior = flyBehavior;
	}
	
	
	public void setQuackBehavior(QuackBehavior quackBehavior) {
		this.quackBehavior = quackBehavior;
	}
	
	
	
}

我们再去实现具体的鸭子类

public class WildDuck extends Duck {

	
	//构造器,传入FlyBehavor 的对象
	public  WildDuck() {
		// TODO Auto-generated constructor stub
		flyBehavior = new GoodFlyBehavior();
	}
	
	
	@Override
	public void display() {
		// TODO Auto-generated method stub
		System.out.println(" 这是野鸭 ");
	}

}


public class PekingDuck extends Duck {

	
	//假如北京鸭可以飞翔,但是飞翔技术一般
	public PekingDuck() {
		// TODO Auto-generated constructor stub
		flyBehavior = new BadFlyBehavior();
		
	}
	
	@Override
	public void display() {
		// TODO Auto-generated method stub
		System.out.println("~~北京鸭~~~");
	}

}


public class ToyDuck extends Duck{

	
	public ToyDuck() {
		// TODO Auto-generated constructor stub
		flyBehavior = new NoFlyBehavior();
	}
	
	@Override
	public void display() {
		// TODO Auto-generated method stub
		System.out.println("玩具鸭");
	}

	//需要重写父类的所有方法
	
	public void quack() {
		System.out.println("玩具鸭不能叫~~");
	}
	
	public void swim() {
		System.out.println("玩具鸭不会游泳~~");
	}

}

调用十分简单,只需要new出我们的鸭子,就可以实现

  • 策略模式的关键是:分析项目中变化部分与不变部分

  • 策略模式的核心思想是:多用组合/聚合 少用继承;用行为类组合,而不是行为的继承。更有弹性

  • 体现了“对修改关闭,对扩展开放”原则,客户端增加行为不用修改原有代码,只 要添加一种策略(或者行为)即可,避免了使用多重转移语句(if..else if..else)

  • 提供了可以替换继承关系的办法: 策略模式将算法封装在独立的Strategy类中使得 你可以独立于其Context改变它,使它易于切换、易于理解、易于扩展

  • 需要注意的是:每添加一个策略就要增加一个类,当策略过多是会导致类数目庞大