\
- The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
- The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 2 28 ) that belong respectively to A, B, C and D .
Output
- For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
-
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
-
5
Hint
-
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
\
思路:
题目是要求四个数相加之和为零, 我们可以两 两相加, 这样的话就变成是求两个数之和为0了,再进一步想就是在另一个数组中找相反数,利用low_bound
()和up_bound可以快速的二分查找。
\
#include<iostream> #include<cstdio> #include<algorithm> using namespace std; const int mx = 4050; int a[mx], b[mx], c[mx], d[mx]; int n, sum1[mx * mx], sum2[ mx * mx]; void slove(){ int cnt =0, nn = n * n; sort(sum1, sum1 + nn); for(int i = 0; i < nn; i++){ cnt += upper_bound(sum1, sum1+ nn, -sum2[i]) - lower_bound(sum1, sum1+ nn, -sum2[i]); //记得负号 } cout<<cnt<<endl; } int main(){ while(scanf("%d", &n) != EOF){ for(int i = 0; i < n; i++) scanf("%d%d%d%d", &a[i], &b[i], &c[i], &d[i]); int c1 = 0, c2 = 0; for(int i =0; i < n; i++) for(int j =0; j < n; j++){ sum1[c1++] = a[i] + b[j]; sum2[c2++] = c[i] + d[j]; } slove(); } return 0; }
\\
\
本文已参与「新人创作礼」活动,一起开启掘金创作之路