《武林绝学》Runtime机制

298 阅读8分钟

Runtime

面试问题:

  1. 编译时语言和动态运行时 语言区别?
  2. 消息与函数调用有什么区别?
  3. 当我们方法没有实现的时候,系统是如何给我们做消息转发的?

本文研究重点

  1. 数据结构
  2. 类对象与元类对象
  3. 消息传递机制
  4. 方法缓存 如何进行方法缓存的查找
  5. 消息转发
  6. 动态添加方法
  7. 动态方法解析

1. 数据结构

  • Objc_object
  • objc_class
  • isa指针
  • Method_t

Id = objc_object

typedef struct objc_object *id;

struct objc_object {
private:
    isa_t isa;

public:

    // ISA() assumes this is NOT a tagged pointer object
    Class ISA();

    // getIsa() allows this to be a tagged pointer object
    Class getIsa();

    // initIsa() should be used to init the isa of new objects only.
    // If this object already has an isa, use changeIsa() for correctness.
    // initInstanceIsa(): objects with no custom RR/AWZ
    // initClassIsa(): class objects
    // initProtocolIsa(): protocol objects
    // initIsa(): other objects
    void initIsa(Class cls /*indexed=false*/);
    void initClassIsa(Class cls /*indexed=maybe*/);
    void initProtocolIsa(Class cls /*indexed=maybe*/);
    void initInstanceIsa(Class cls, bool hasCxxDtor);

    // changeIsa() should be used to change the isa of existing objects.
    // If this is a new object, use initIsa() for performance.
    Class changeIsa(Class newCls);

    bool hasIndexedIsa();
    bool isTaggedPointer();
    bool isClass();

    // object may have associated objects?
    bool hasAssociatedObjects();
    void setHasAssociatedObjects();

    // object may be weakly referenced?
    bool isWeaklyReferenced();
    void setWeaklyReferenced_nolock();

    // object may have -.cxx_destruct implementation?
    bool hasCxxDtor();

    // Optimized calls to retain/release methods
    id retain();
    void release();
    id autorelease();

    // Implementations of retain/release methods
    id rootRetain();
    bool rootRelease();
    id rootAutorelease();
    bool rootTryRetain();
    bool rootReleaseShouldDealloc();
    uintptr_t rootRetainCount();

    // Implementation of dealloc methods
    bool rootIsDeallocating();
    void clearDeallocating();
    void rootDealloc();

private:
    void initIsa(Class newCls, bool indexed, bool hasCxxDtor);

    // Slow paths for inline control
    id rootAutorelease2();
    bool overrelease_error();

#if SUPPORT_NONPOINTER_ISA
    // Unified retain count manipulation for nonpointer isa
    id rootRetain(bool tryRetain, bool handleOverflow);
    bool rootRelease(bool performDealloc, bool handleUnderflow);
    id rootRetain_overflow(bool tryRetain);
    bool rootRelease_underflow(bool performDealloc);

    void clearDeallocating_slow();

    // Side table retain count overflow for nonpointer isa
    void sidetable_lock();
    void sidetable_unlock();

    void sidetable_moveExtraRC_nolock(size_t extra_rc, bool isDeallocating, bool weaklyReferenced);
    bool sidetable_addExtraRC_nolock(size_t delta_rc);
    size_t sidetable_subExtraRC_nolock(size_t delta_rc);
    size_t sidetable_getExtraRC_nolock();
#endif

    // Side-table-only retain count
    bool sidetable_isDeallocating();
    void sidetable_clearDeallocating();

    bool sidetable_isWeaklyReferenced();
    void sidetable_setWeaklyReferenced_nolock();

    id sidetable_retain();
    id sidetable_retain_slow(SideTable& table);

    uintptr_t sidetable_release(bool performDealloc = true);
    uintptr_t sidetable_release_slow(SideTable& table, bool performDealloc = true);

    bool sidetable_tryRetain();

    uintptr_t sidetable_retainCount();
#if DEBUG
    bool sidetable_present();
#endif
};

Objc_object 还提供过了其他信息

isa_t

关于isa操作相关

弱引用相关

关联对象相关

内存管理相关

** objc_class**

typedef struct objc_class *Class;
// 继承自objc_object
struct objc_class : objc_object {
    // Class ISA;
    Class superclass;
    cache_t cache;             // formerly cache pointer and vtable
    class_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags

    class_rw_t *data() { 
        return bits.data();
    }
    void setData(class_rw_t *newData) {
        bits.setData(newData);
    }

    void setInfo(uint32_t set) {
        assert(isFuture()  ||  isRealized());
        data()->setFlags(set);
    }

    void clearInfo(uint32_t clear) {
        assert(isFuture()  ||  isRealized());
        data()->clearFlags(clear);
    }

    // set and clear must not overlap
    void changeInfo(uint32_t set, uint32_t clear) {
        assert(isFuture()  ||  isRealized());
        assert((set & clear) == 0);
        data()->changeFlags(set, clear);
    }

    bool hasCustomRR() {
        return ! bits.hasDefaultRR();
    }
    void setHasDefaultRR() {
        assert(isInitializing());
        bits.setHasDefaultRR();
    }
    void setHasCustomRR(bool inherited = false);
    void printCustomRR(bool inherited);

    bool hasCustomAWZ() {
        return ! bits.hasDefaultAWZ();
    }
    void setHasDefaultAWZ() {
        assert(isInitializing());
        bits.setHasDefaultAWZ();
    }
    void setHasCustomAWZ(bool inherited = false);
    void printCustomAWZ(bool inherited);

    bool requiresRawIsa() {
        return bits.requiresRawIsa();
    }
    void setRequiresRawIsa(bool inherited = false);
    void printRequiresRawIsa(bool inherited);

    bool canAllocIndexed() {
        assert(!isFuture());
        return !requiresRawIsa();
    }
    bool canAllocFast() {
        assert(!isFuture());
        return bits.canAllocFast();
    }


    bool hasCxxCtor() {
        // addSubclass() propagates this flag from the superclass.
        assert(isRealized());
        return bits.hasCxxCtor();
    }
    void setHasCxxCtor() { 
        bits.setHasCxxCtor();
    }

    bool hasCxxDtor() {
        // addSubclass() propagates this flag from the superclass.
        assert(isRealized());
        return bits.hasCxxDtor();
    }
    void setHasCxxDtor() { 
        bits.setHasCxxDtor();
    }


    bool isSwift() {
        return bits.isSwift();
    }


#if SUPPORT_NONPOINTER_ISA
    // Tracked in non-pointer isas; not tracked otherwise
#else
    bool instancesHaveAssociatedObjects() {
        // this may be an unrealized future class in the CF-bridged case
        assert(isFuture()  ||  isRealized());
        return data()->flags & RW_INSTANCES_HAVE_ASSOCIATED_OBJECTS;
    }

    void setInstancesHaveAssociatedObjects() {
        // this may be an unrealized future class in the CF-bridged case
        assert(isFuture()  ||  isRealized());
        setInfo(RW_INSTANCES_HAVE_ASSOCIATED_OBJECTS);
    }
#endif

    bool shouldGrowCache() {
        return true;
    }

    void setShouldGrowCache(bool) {
        // fixme good or bad for memory use?
    }

    bool shouldFinalizeOnMainThread() {
        // finishInitializing() propagates this flag from the superclass.
        assert(isRealized());
        return data()->flags & RW_FINALIZE_ON_MAIN_THREAD;
    }

    void setShouldFinalizeOnMainThread() {
        assert(isRealized());
        setInfo(RW_FINALIZE_ON_MAIN_THREAD);
    }

    bool isInitializing() {
        return getMeta()->data()->flags & RW_INITIALIZING;
    }

    void setInitializing() {
        assert(!isMetaClass());
        ISA()->setInfo(RW_INITIALIZING);
    }

    bool isInitialized() {
        return getMeta()->data()->flags & RW_INITIALIZED;
    }

    void setInitialized();

    bool isLoadable() {
        assert(isRealized());
        return true;  // any class registered for +load is definitely loadable
    }

    IMP getLoadMethod();

    // Locking: To prevent concurrent realization, hold runtimeLock.
    bool isRealized() {
        return data()->flags & RW_REALIZED;
    }

    // Returns true if this is an unrealized future class.
    // Locking: To prevent concurrent realization, hold runtimeLock.
    bool isFuture() { 
        return data()->flags & RW_FUTURE;
    }

    bool isMetaClass() {
        assert(this);
        assert(isRealized());
        return data()->ro->flags & RO_META;
    }

    // NOT identical to this->ISA when this is a metaclass
    Class getMeta() {
        if (isMetaClass()) return (Class)this;
        else return this->ISA();
    }

    bool isRootClass() {
        return superclass == nil;
    }
    bool isRootMetaclass() {
        return ISA() == (Class)this;
    }

    const char *mangledName() { 
        // fixme can't assert locks here
        assert(this);

        if (isRealized()  ||  isFuture()) {
            return data()->ro->name;
        } else {
            return ((const class_ro_t *)data())->name;
        }
    }
    
    const char *demangledName(bool realize = false);
    const char *nameForLogging();

    // May be unaligned depending on class's ivars.
    uint32_t unalignedInstanceSize() {
        assert(isRealized());
        return data()->ro->instanceSize;
    }

    // Class's ivar size rounded up to a pointer-size boundary.
    uint32_t alignedInstanceSize() {
        return word_align(unalignedInstanceSize());
    }

    size_t instanceSize(size_t extraBytes) {
        size_t size = alignedInstanceSize() + extraBytes;
        // CF requires all objects be at least 16 bytes.
        if (size < 16) size = 16;
        return size;
    }

    void setInstanceSize(uint32_t newSize) {
        assert(isRealized());
        if (newSize != data()->ro->instanceSize) {
            assert(data()->flags & RW_COPIED_RO);
            *const_cast<uint32_t *>(&data()->ro->instanceSize) = newSize;
        }
        bits.setFastInstanceSize(newSize);
    }
};

  • isa指针
// 共用体
union isa_t 
{
    isa_t() { }
    isa_t(uintptr_t value) : bits(value) { }

    Class cls;
    uintptr_t bits;

#if SUPPORT_NONPOINTER_ISA

    // extra_rc must be the MSB-most field (so it matches carry/overflow flags)
    // indexed must be the LSB (fixme or get rid of it)
    // shiftcls must occupy the same bits that a real class pointer would
    // bits + RC_ONE is equivalent to extra_rc + 1
    // RC_HALF is the high bit of extra_rc (i.e. half of its range)

    // future expansion:
    // uintptr_t fast_rr : 1;     // no r/r overrides
    // uintptr_t lock : 2;        // lock for atomic property, @synch
    // uintptr_t extraBytes : 1;  // allocated with extra bytes

# if __arm64__
#   define ISA_MASK        0x0000000ffffffff8ULL
#   define ISA_MAGIC_MASK  0x000003f000000001ULL
#   define ISA_MAGIC_VALUE 0x000001a000000001ULL
    struct {
        uintptr_t indexed           : 1;
        uintptr_t has_assoc         : 1;
        uintptr_t has_cxx_dtor      : 1;
        uintptr_t shiftcls          : 33; // MACH_VM_MAX_ADDRESS 0x1000000000
        uintptr_t magic             : 6;
        uintptr_t weakly_referenced : 1;
        uintptr_t deallocating      : 1;
        uintptr_t has_sidetable_rc  : 1;
        uintptr_t extra_rc          : 19;
#       define RC_ONE   (1ULL<<45)
#       define RC_HALF  (1ULL<<18)
    };

# elif __x86_64__
#   define ISA_MASK        0x00007ffffffffff8ULL
#   define ISA_MAGIC_MASK  0x001f800000000001ULL
#   define ISA_MAGIC_VALUE 0x001d800000000001ULL
    struct {
        uintptr_t indexed           : 1;
        uintptr_t has_assoc         : 1;
        uintptr_t has_cxx_dtor      : 1;
        uintptr_t shiftcls          : 44; // MACH_VM_MAX_ADDRESS 0x7fffffe00000
        uintptr_t magic             : 6;
        uintptr_t weakly_referenced : 1;
        uintptr_t deallocating      : 1;
        uintptr_t has_sidetable_rc  : 1;
        uintptr_t extra_rc          : 8;
#       define RC_ONE   (1ULL<<56)
#       define RC_HALF  (1ULL<<7)
    };

# else
    // Available bits in isa field are architecture-specific.
#   error unknown architecture
# endif

// SUPPORT_NONPOINTER_ISA
#endif

};

image-20211019221457362.png

对于非指针型isa,实际上只需要三四十位进行保存地址就可以了。

问题:isa指针是什么含义的时候?

有指针类型的isa和非指针类型的isa. (标准答案)

isa指向

关于对象,其指向类对象。

关于类对象,其指向元类对象。

调用实例方法,实际上是通过isa指针到类对象里面进行查找的。

cache_t

用于快速查找方法执行的函数

可增量扩展哈希表结构,结构存储增大 也会动态增加的。

局部性原理的最佳应用

struct cache_t {
    struct bucket_t *_buckets;
    mask_t _mask;
    mask_t _occupied;

public:
    struct bucket_t *buckets();
    mask_t mask();
    mask_t occupied();
    void incrementOccupied();
    void setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask);
    void initializeToEmpty();

    mask_t capacity();
    bool isConstantEmptyCache();
    bool canBeFreed();

    static size_t bytesForCapacity(uint32_t cap);
    static struct bucket_t * endMarker(struct bucket_t *b, uint32_t cap);

    void expand();
    void reallocate(mask_t oldCapacity, mask_t newCapacity);
    struct bucket_t * find(cache_key_t key, id receiver);

    static void bad_cache(id receiver, SEL sel, Class isa) __attribute__((noreturn));
};

image-20211019222625954.png bucket_t

struct bucket_t {
private:
    cache_key_t _key; // 对应于OC的selector
    IMP _imp;  // 无类型的函数指针

public:
    inline cache_key_t key() const { return _key; }
    inline IMP imp() const { return (IMP)_imp; }
    inline void setKey(cache_key_t newKey) { _key = newKey; }
    inline void setImp(IMP newImp) { _imp = newImp; }

    void set(cache_key_t newKey, IMP newImp);
};

class_data_bits_t

主要是对class_rw_t的封装

class_rw_t代表了类相关读写信息,对class_ro_t的封装。

class_ro_t代表了类相关只读信息。

struct class_data_bits_t {

    // Values are the FAST_ flags above.
    uintptr_t bits;
private:
    bool getBit(uintptr_t bit)
    {
        return bits & bit;
    }

#if FAST_ALLOC
    static uintptr_t updateFastAlloc(uintptr_t oldBits, uintptr_t change)
    {
        if (change & FAST_ALLOC_MASK) {
            if (((oldBits & FAST_ALLOC_MASK) == FAST_ALLOC_VALUE)  &&  
                ((oldBits >> FAST_SHIFTED_SIZE_SHIFT) != 0)) 
            {
                oldBits |= FAST_ALLOC;
            } else {
                oldBits &= ~FAST_ALLOC;
            }
        }
        return oldBits;
    }
#else
    static uintptr_t updateFastAlloc(uintptr_t oldBits, uintptr_t change) {
        return oldBits;
    }
#endif

    void setBits(uintptr_t set) 
    {
        uintptr_t oldBits;
        uintptr_t newBits;
        do {
            oldBits = LoadExclusive(&bits);
            newBits = updateFastAlloc(oldBits | set, set);
        } while (!StoreReleaseExclusive(&bits, oldBits, newBits));
    }

    void clearBits(uintptr_t clear) 
    {
        uintptr_t oldBits;
        uintptr_t newBits;
        do {
            oldBits = LoadExclusive(&bits);
            newBits = updateFastAlloc(oldBits & ~clear, clear);
        } while (!StoreReleaseExclusive(&bits, oldBits, newBits));
    }

public:

    class_rw_t* data() {
        return (class_rw_t *)(bits & FAST_DATA_MASK);
    }
    void setData(class_rw_t *newData)
    {
        assert(!data()  ||  (newData->flags & (RW_REALIZING | RW_FUTURE)));
        // Set during realization or construction only. No locking needed.
        bits = (bits & ~FAST_DATA_MASK) | (uintptr_t)newData;
    }

    bool hasDefaultRR() {
        return getBit(FAST_HAS_DEFAULT_RR);
    }
    void setHasDefaultRR() {
        setBits(FAST_HAS_DEFAULT_RR);
    }
    void setHasCustomRR() {
        clearBits(FAST_HAS_DEFAULT_RR);
    }

#if FAST_HAS_DEFAULT_AWZ
    bool hasDefaultAWZ() {
        return getBit(FAST_HAS_DEFAULT_AWZ);
    }
    void setHasDefaultAWZ() {
        setBits(FAST_HAS_DEFAULT_AWZ);
    }
    void setHasCustomAWZ() {
        clearBits(FAST_HAS_DEFAULT_AWZ);
    }
#else
    bool hasDefaultAWZ() {
        return data()->flags & RW_HAS_DEFAULT_AWZ;
    }
    void setHasDefaultAWZ() {
        data()->setFlags(RW_HAS_DEFAULT_AWZ);
    }
    void setHasCustomAWZ() {
        data()->clearFlags(RW_HAS_DEFAULT_AWZ);
    }
#endif

#if FAST_HAS_CXX_CTOR
    bool hasCxxCtor() {
        return getBit(FAST_HAS_CXX_CTOR);
    }
    void setHasCxxCtor() {
        setBits(FAST_HAS_CXX_CTOR);
    }
#else
    bool hasCxxCtor() {
        return data()->flags & RW_HAS_CXX_CTOR;
    }
    void setHasCxxCtor() {
        data()->setFlags(RW_HAS_CXX_CTOR);
    }
#endif

#if FAST_HAS_CXX_DTOR
    bool hasCxxDtor() {
        return getBit(FAST_HAS_CXX_DTOR);
    }
    void setHasCxxDtor() {
        setBits(FAST_HAS_CXX_DTOR);
    }
#else
    bool hasCxxDtor() {
        return data()->flags & RW_HAS_CXX_DTOR;
    }
    void setHasCxxDtor() {
        data()->setFlags(RW_HAS_CXX_DTOR);
    }
#endif

#if FAST_REQUIRES_RAW_ISA
    bool requiresRawIsa() {
        return getBit(FAST_REQUIRES_RAW_ISA);
    }
    void setRequiresRawIsa() {
        setBits(FAST_REQUIRES_RAW_ISA);
    }
#else
# if SUPPORT_NONPOINTER_ISA
#   error oops
# endif
    bool requiresRawIsa() {
        return true;
    }
    void setRequiresRawIsa() {
        // nothing
    }
#endif

#if FAST_ALLOC
    size_t fastInstanceSize() 
    {
        assert(bits & FAST_ALLOC);
        return (bits >> FAST_SHIFTED_SIZE_SHIFT) * 16;
    }
    void setFastInstanceSize(size_t newSize) 
    {
        // Set during realization or construction only. No locking needed.
        assert(data()->flags & RW_REALIZING);

        // Round up to 16-byte boundary, then divide to get 16-byte units
        newSize = ((newSize + 15) & ~15) / 16;
        
        uintptr_t newBits = newSize << FAST_SHIFTED_SIZE_SHIFT;
        if ((newBits >> FAST_SHIFTED_SIZE_SHIFT) == newSize) {
            int shift = WORD_BITS - FAST_SHIFTED_SIZE_SHIFT;
            uintptr_t oldBits = (bits << shift) >> shift;
            if ((oldBits & FAST_ALLOC_MASK) == FAST_ALLOC_VALUE) {
                newBits |= FAST_ALLOC;
            }
            bits = oldBits | newBits;
        }
    }

    bool canAllocFast() {
        return bits & FAST_ALLOC;
    }
#else
    size_t fastInstanceSize() {
        abort();
    }
    void setFastInstanceSize(size_t) {
        // nothing
    }
    bool canAllocFast() {
        return false;
    }
#endif

    bool isSwift() {
        return getBit(FAST_IS_SWIFT);
    }

    void setIsSwift() {
        setBits(FAST_IS_SWIFT);
    }
};

Class_rw_t

主要包含了

  1. class_ro_t
  2. protocols list_array_tt 二维数组
  3. properties list_array_tt 二维数组
  4. methods list_array_tt 二维数组

image.png

struct class_rw_t {
    uint32_t flags;
    uint32_t version;

    const class_ro_t *ro;

    method_array_t methods;
    property_array_t properties;
    protocol_array_t protocols;

    Class firstSubclass;
    Class nextSiblingClass;

    char *demangledName;

    void setFlags(uint32_t set) 
    {
        OSAtomicOr32Barrier(set, &flags);
    }

    void clearFlags(uint32_t clear) 
    {
        OSAtomicXor32Barrier(clear, &flags);
    }

    // set and clear must not overlap
    void changeFlags(uint32_t set, uint32_t clear) 
    {
        assert((set & clear) == 0);

        uint32_t oldf, newf;
        do {
            oldf = flags;
            newf = (oldf | set) & ~clear;
        } while (!OSAtomicCompareAndSwap32Barrier(oldf, newf, (volatile int32_t *)&flags));
    }
};

Class_ro_t

主要包含几个属性

name

baseMethodList 一维数组

baseProtocols 一维数组

baseProperties 一维数组

ivars 一维数组

存储原始定义的一些方法列表,属性列表,协议列表。

image.png

struct class_ro_t {
    uint32_t flags;
    uint32_t instanceStart;
    uint32_t instanceSize;
#ifdef __LP64__
    uint32_t reserved;
#endif

    const uint8_t * ivarLayout;
    
    const char * name;
    method_list_t * baseMethodList;
    protocol_list_t * baseProtocols;
    const ivar_list_t * ivars;

    const uint8_t * weakIvarLayout;
    property_list_t *baseProperties;

    method_list_t *baseMethods() const {
        return baseMethodList;
    }
};
  • Method_t

函数四要素:

  1. 名称
  2. 返回值
  3. 参数
  4. 函数体

image.png

struct method_t {
    SEL name;
    const char *types;
    IMP imp;

    struct SortBySELAddress :
        public std::binary_function<const method_t&,
                                    const method_t&, bool>
    {
        bool operator() (const method_t& lhs,
                         const method_t& rhs)
        { return lhs.name < rhs.name; }
    };
};

types 编码规则

image.png

IMP SEL

/// An opaque type that represents a method selector.
typedef struct objc_selector *SEL;

/// A pointer to the function of a method implementation. 
#if !OBJC_OLD_DISPATCH_PROTOTYPES
typedef void (*IMP)(void /* id, SEL, ... */ ); 
#else
typedef id (*IMP)(id, SEL, ...); 
#endif

整体走向

image.png

  1. 类对象与元类对象

实例对象通过isa指针找到他的类对象,类对象中存储方法列表。

类对象通过isa指针找到他的元类对象。元类对象中存储类方法列表。

类对象和元类对象都是objc_class 数据结构的,由于objc_class继承自objc_object,所以他们都有isa指针,进而可以实现上面描述的两点。(一定要全,加分项)

  1. 如果说我们调用的类方法没有对应的实现,但是有同名的实例方法的时候,会不会发生崩溃?会不会产生实际的调用?

根元类的superClass 指向根类对象,当我们在元类对象当中找类方法的时候,类方法没有找到的情况下,就会顺着指针,向实例方法中进行查找。如果有同名方法,就会执行同名的实例方法的调用。

关键点:同名实例方法要写到NSObject上,已有的实例方法或者是通过分类添加。

image.png

  1. 消息传递机制

调用实例方法, 顺着实例对象的isa指针找到类对象,类对象依次顺着superclass进行查找

调用类方法,顺着类对象的isa指针找到元类对象,元类对象依次顺着superclass进行查找,一直找到Nil。

面试题

@interface Person()
@end

@implementation Person

- (instancetype)init{
    self = [super init];
    if (self) {
        
        //打印结果是什么呢
        NSLog(@"%@",NSStringFromClass([self class]));
        NSLog(@"%@",NSStringFromClass([super class]));
    }
    return self;
}
@end

image.png

super 编译器关键字,会转换成objc_super这样的结构体

image.png 缓存查找

方法缓存 如何进行方法缓存的查找,具体是怎样的流程

如果当前类的缓存没有,会查找父类的缓存吗, 父类找到了,会存到 缓存列表吗,缓存的话,父类缓存列表会缓存还是当前类的会缓存。

image.png

f(key):hash查找 key&mask

当前类中查找

对于已排序好的列表,采用二分查找算法查找方法对应执行函数。

对于没有排序的列表,采用一般遍历查找算法查找方法对应执行函数。

消息传递中,什么情况下方法列表是已排序好的,什么情况下是没有排序的?

/***********************************************************************
* getMethodNoSuper_nolock
* fixme
* Locking: runtimeLock must be read- or write-locked by the caller
**********************************************************************/
static method_t *search_method_list(const method_list_t *mlist, SEL sel)
{
    int methodListIsFixedUp = mlist->isFixedUp();
    int methodListHasExpectedSize = mlist->entsize() == sizeof(method_t);
    
  	 //判断有序 进行二分查找
    if (__builtin_expect(methodListIsFixedUp && methodListHasExpectedSize, 1)) {
        return findMethodInSortedMethodList(sel, mlist);
    } else {
        // Linear search of unsorted method list
        // 线性遍历查找
        for (auto& meth : *mlist) {
            if (meth.name == sel) return &meth;
        }
    }

#if DEBUG
    // sanity-check negative results
    if (mlist->isFixedUp()) {
        for (auto& meth : *mlist) {
            if (meth.name == sel) {
                _objc_fatal("linear search worked when binary search did not");
            }
        }
    }
#endif

    return nil;
}

父类中逐级查找

image.png

  1. 消息转发
  2. 动态添加方法
  3. 动态方法解析

/***********************************************************************
* lookUpImpOrForward.
* The standard IMP lookup. 
* initialize==NO tries to avoid +initialize (but sometimes fails)
* cache==NO skips optimistic unlocked lookup (but uses cache elsewhere)
* Most callers should use initialize==YES and cache==YES.
* inst is an instance of cls or a subclass thereof, or nil if none is known. 
*   If cls is an un-initialized metaclass then a non-nil inst is faster.
* May return _objc_msgForward_impcache. IMPs destined for external use 
*   must be converted to _objc_msgForward or _objc_msgForward_stret.
*   If you don't want forwarding at all, use lookUpImpOrNil() instead.
**********************************************************************/
IMP lookUpImpOrForward(Class cls, SEL sel, id inst, 
                       bool initialize, bool cache, bool resolver)
{
    Class curClass;
    IMP imp = nil;
    Method meth;
    bool triedResolver = NO;

    runtimeLock.assertUnlocked();

    // Optimistic cache lookup
    if (cache) {
        imp = cache_getImp(cls, sel);
        if (imp) return imp;
    }

    if (!cls->isRealized()) {
        rwlock_writer_t lock(runtimeLock);
        realizeClass(cls);
    }

    if (initialize  &&  !cls->isInitialized()) {
        _class_initialize (_class_getNonMetaClass(cls, inst));
        // If sel == initialize, _class_initialize will send +initialize and 
        // then the messenger will send +initialize again after this 
        // procedure finishes. Of course, if this is not being called 
        // from the messenger then it won't happen. 2778172
    }

    // The lock is held to make method-lookup + cache-fill atomic 
    // with respect to method addition. Otherwise, a category could 
    // be added but ignored indefinitely because the cache was re-filled 
    // with the old value after the cache flush on behalf of the category.
 retry:
    runtimeLock.read();

    // Ignore GC selectors
    if (ignoreSelector(sel)) {
        imp = _objc_ignored_method;
        cache_fill(cls, sel, imp, inst);
        goto done;
    }

    // Try this class's cache.

    imp = cache_getImp(cls, sel);
    if (imp) goto done;

    // Try this class's method lists.

    meth = getMethodNoSuper_nolock(cls, sel);
    if (meth) {
       // 缓存在当前类
        log_and_fill_cache(cls, meth->imp, sel, inst, cls);
        imp = meth->imp;
        goto done;
    }

    // Try superclass caches and method lists.

    curClass = cls;
    while ((curClass = curClass->superclass)) {
        // Superclass cache.
        imp = cache_getImp(curClass, sel);
        if (imp) {
            if (imp != (IMP)_objc_msgForward_impcache) {
                // Found the method in a superclass. Cache it in this class.
              	// 缓存在当前类
                log_and_fill_cache(cls, imp, sel, inst, curClass);
                goto done;
            }
            else {
                // Found a forward:: entry in a superclass.
                // Stop searching, but don't cache yet; call method 
                // resolver for this class first.
                break;
            }
        }

        // Superclass method list.
        meth = getMethodNoSuper_nolock(curClass, sel);
        if (meth) {
           // 缓存在当前类
            log_and_fill_cache(cls, meth->imp, sel, inst, curClass);
            imp = meth->imp;
            goto done;
        }
    }

    // No implementation found. Try method resolver once.

    if (resolver  &&  !triedResolver) {
        runtimeLock.unlockRead();
        _class_resolveMethod(cls, sel, inst);
        // Don't cache the result; we don't hold the lock so it may have 
        // changed already. Re-do the search from scratch instead.
        triedResolver = YES;
        goto retry;
    }

    // No implementation found, and method resolver didn't help. 
    // Use forwarding.

    imp = (IMP)_objc_msgForward_impcache;
    cache_fill(cls, sel, imp, inst);

 done:
    runtimeLock.unlockRead();

    // paranoia: look for ignored selectors with non-ignored implementations
    assert(!(ignoreSelector(sel)  &&  imp != (IMP)&_objc_ignored_method));

    // paranoia: never let uncached leak out
    assert(imp != _objc_msgSend_uncached_impcache);

    return imp;
}

消息转发

image.png

Method-Swizzling

  1. 注意事项

动态添加方法

你是否用过peformSlector:? 涉及很多东西,可能是涉及动态添加方法。

  1. 什么情况下需要用到动态添加方法??

常见场景就是@dynamic定义的变量属性,可能会用到动态添加setter getter方法

另外比较常见的就是在进行消息转发的时候,如果消息接收对象没有该方法,可以为其动态添加一个方法

  1. 返回消息转发第一步函数,不管返回yes或者no,只要你动态添加了方法,方法列表更新了之后,系统会自动去重新进行消息传递机制,重新进行方法查找。

动态添加方法在系统第一次回调resolveInstanceMethod的时候我们一般先注册方法,然后返回yes 系统会重新查找方法。这一步骤返回no的话 系统会进行转发走forwardTarget回调来寻求转发。如果这一步骤没有处理 那么系统会进行最后一次处理进行foralwardInvocation

image.png