小知识,大挑战!本文正在参与“程序员必备小知识”创作活动。
前言
Hello!小伙伴!
非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~
自我介绍 ଘ(੭ˊᵕˋ)੭
昵称:海轰
标签:程序猿|C++选手|学生
简介:因C语言结识编程,随后转入计算机专业,有幸拿过一些国奖、省奖...已保研。目前正在学习C++/Linux/Python
学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!
机器学习小白阶段
文章仅作为自己的学习笔记 用于知识体系建立以及复习
知其然 知其所以然!
若查看数学公式不全或显示错误
可以查看:MML学习笔记(八):线性代数之矩阵的初等变换
3.1 矩阵的初等变换
定义
矩阵的初等行变换
- 对调两行(对调i,j两行,记作ri↔rj)
- 以数k=0乘某一行中的所有元素(第i行乘以k,记作ri×k)
- 把某一行所有的元素的k倍加到另一行对应的元素上(第j行的k倍加到第i行上,记作ri+krj)
列变换同理,对列进行相应的操作(也是上面三种操作)
初等行变换、列变换统称初等变换。
如果矩阵A经过有限次初等行变换变成B,就称矩阵A与B行等价,记作A∼rB
如果矩阵A经过有限次初等列变换变成B,就称矩阵A与B列等价,记作A∼cB
如果矩阵A经过有限次初等变换变成矩阵B,那么称矩阵A与B等价,记作A~B
注:
后文中使用如下符号代表行、列变换
A∼rB代表A通过列变换到B
A∼cB代表A通过列变换到B
等价具有的性质
矩阵之间的等价关系具有以下性质:
- 反身性 A~A
- 对称性 若A~B,则B~A
- 传递性 若A~B,B~C,则A~C
矩阵类型
1、行阶梯形矩阵
可以画出一条阶梯线,线的下方全为0;
每一个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素为非零元,也就是非零行的第一个非零元。
2、行最简形矩阵
在行阶梯形矩阵定义的基础之上还要求:
- 非零行的第一个非零元为1
- 且这些非零元所处的列的其他元素为0.
任何矩阵Am×n总可经过有限次初等变换将其变为行阶梯形矩阵、行最简形矩阵。
3、标准形矩阵
对行最简形矩阵再进行处等列变换,可以得到一种形状更简单的矩阵,成为标准形矩阵。
其特点是左上角是一个单位矩阵,其余元素均为0.
对于矩阵A,总可以经过一系列初等变换转化为标准形矩阵F
其中r为行阶梯形矩阵中非零行的行数。
4、初等矩阵
由单位矩阵E经过一次初等变换得到的矩阵称为初等矩阵
有三种初等变换,则有三种初等矩阵,下面以行初等变换为例
(1)将单位矩阵中的第i、j行对调,得初等矩阵
用m阶初等矩阵Em(i,j)左乘矩阵A,其中A=(aij)m∗n,得到

观察结果,可以发现最终结果其实就是将A矩阵中第i、j行进行了对调(ri↔rj)
举个实际例子(左乘):
对调单位矩阵的第1、3行
同理,以n阶初等矩阵右乘矩阵A,结果就是相对于对矩阵A进行列变换
(2)以数k!=0乘单位矩阵的第i行(或第i列),得到初等矩阵

可以发现,矩阵Em(i(k))左乘矩阵A,结果就是相对于数k乘以A的第i行
举个实际例子(左乘):
单位矩阵第二行乘以k=2
同理,Em(i(k))右乘A,相当于k乘以A的第i列
(3)以k乘E的第j行加到第i行(或k乘以第j列加到第i列),得到初等矩阵
左乘时,相当于把矩阵A的第j行乘k加到第i行上
举个实际例子(左乘):
单位矩阵第3行乘以k=2加到第2行上
同理,右乘时,相当于把矩阵A的第j列乘k加到第i列上
性质
从上面的讨论中,可以得出
性质1
设A是一个m*n矩阵
- 对A施加一次初等行变换,相当于在A的左边乘以相应的m阶初等矩阵;
- 对A施加一次初等列变换,相当于在A的右边乘以相应的n阶初等矩阵
初等矩阵都是可逆的,且其逆矩阵都是同一类型的初等矩阵
- E(i,j)−1=E(i,j)
- E(i(k))−1=E(i(k1))
- E(ij(k))−1=E(ij(−k))
注意
- E(i(k))是指对单位矩阵第i行乘以k
- E(ij(k))是指单位矩阵第i行加上第j行乘以k
实例演示
设3阶单位阵E
E=⎣⎡100010001⎦⎤
很显然
所以单位阵的逆矩阵为其本身 即 E(i,j)−1=E(i,j)
假设对E的第二行乘以2
得到E(i(2))=⎣⎡100020001⎦⎤(i=2,表示第二行)
那么E(i(2))−1=E(i(21))=⎣⎡1000210001⎦⎤
有
⎣⎡100020001⎦⎤∗⎣⎡1000210001⎦⎤=⎣⎡100010001⎦⎤=E
假设对E的第3行乘以2 再加到第2行上
得到E(ij(2))=⎣⎡100010021⎦⎤(i=2、j=3,分别表示第2、3行)
那么E(ij(2))−1=E(ij(−2))=⎣⎡1000100−21⎦⎤
有
⎣⎡1000100−21⎦⎤+⎣⎡100010021⎦⎤=⎣⎡100010001⎦⎤=E
性质2
方阵A可逆的充分必要条件是存在有限个初等矩阵P1,P2,...Pi,使得A=P1P2...Pi
证明:
先证明充分性:
设A=P1P2...Pi
因为初等矩阵可逆,有限个可逆矩阵的乘积依然可逆
所以A可逆
证必要性:
假设n阶方阵A可逆
A通过一系列变换转换为标准形矩阵F
那么F也可以通过一系列初等变换转换为A
F~A
所以
A=P1...PsFPs+1...Pi
因为A可逆,P1,P2,...Pi,也可逆
所以F也可逆
又因为
F=[Er000]n∗n
若r<n
那么|F|=0 说明F不可逆 与前提条件相反
所以r=n
即F=E(F为单位矩阵)
所以
A=P1P2...Pi
定理1
设A、B均为m×n矩阵,那么
- A~B(r)【指对A进行初等行变换】的充分必要条件是存在m阶可逆矩阵P,使得PA=B
- A~B(c)【指对A进行初等列变换】的充分必要条件是存在n阶可逆矩阵Q,使得AQ=B
- A~B的充分必要条件是存在m阶可逆矩阵P、n阶可逆矩阵Q,使得PAQ=B
推论
方阵A可逆的条件是 A~E(r,指行变换)
证明充分性:
因为A~E(r,指行变换)
所以存在初等矩阵P,使得PA=E
因为E可逆、 P可逆
那么A一定可逆
证明必要性:
首先A通过初等行变换一定可以变为F A~F
F=[Er000]n∗n
若r<n 说明|F|=0
因为A可逆 所以F可逆
若|F|=0 则不可逆
所以|F|!=0
那么 r=n
即 F=E
故 A~E(r,指行变换)
补充
定理1表明,如果A~B(r,指行变换),即A经过一系列初等行变换可以变为B,则一定存在可逆矩阵P,使得PA=B,那么如何求P呢?
假设已知A、B的情况下
首先依据题意可得
{PA=BPE=P
所以
P(A,E)=(B,P)
推出
矩阵(A,E)通过初等行变换可以变为矩阵(B,P)
A、E、B已知,那么P就一目了然啦
注意:
矩阵(A,E)的意思是矩阵A与矩阵E横行拼接
比如
A=[1324]
E=[1001]
那么矩阵
(A,E)=[13241001]
当B=E时,此时求的P就是A的逆矩阵A−1(求逆矩阵的一个常用方法!)
结语
说明:
- 参考于 课本《线性代数》第五版 同济大学数学系编
- 配合书中概念讲解 结合了自己的一些理解及思考
文章仅作为学习笔记,记录从0到1的一个过程
希望对您有所帮助,如有错误欢迎小伙伴指正~
我是 海轰ଘ(੭ˊᵕˋ)੭
如果您觉得写得可以的话,请点个赞吧
谢谢支持 ❤️