12.多线程
进程与线程
线程的创建
继承Thread类,实现Runnable接口,实现Callable接口
1.继承Thread类
public class ThreadCreateDemo1 { public static void main(String[] args) {
MyThread thread = new MyThread();
thread.start(); //调用start()方法启动线程,线程不一定立即执行,CPU安排调度
}
}class MyThread extends Thread {//继承Thread类
@Override
public void run() {//重写run()方法,编写线程执行体
super.run();
System.out.println("hellow_world!");
}
}
2.实现Runnable接口
public class ThreadCreateDemo2 { //创建线程对象,调用start()方法启动线程
public static void main(String[] args) {
Runnable runnable = new MyRunnable();
Thread thread = new Thread(runnable);
thread.start();
}
}class MyRunnable implements Runnable { public void run() {
System.out.println("通过Runnable创建的线程!");
}
}
上述两种创建方式,工作时性质一样。但是建议使用*实现Runable接口*方式。解决单继承的局限性。
3.实现Callable接口
public class ThreadCreateDemo3 implements Callable<Integer>{ // 实现call方法,作为线程执行体
public Integer call(){ int i = 0; for ( ; i < 100 ; i++ ){
System.out.println(Thread.currentThread().getName()+ "\t" + i);
} // call()方法可以有返回值
return i;
} public static void main(String[] args) { // 创建Callable对象
ThreadCreateDemo3 myCallableTest = new ThreadCreateDemo3(); // 使用FutureTask来包装Callable对象
FutureTask<Integer> task = new FutureTask<Integer>(myCallableTest); for (int i = 0 ; i < 100 ; i++){
System.out.println(Thread.currentThread().getName()+ " \t" + i); if (i == 20){ // 实质还是以Callable对象来创建、并启动线程
new Thread(task , "callable").start();
}
} try{ // 获取线程返回值
System.out.println("callable返回值:" + task.get());
} catch (Exception ex){
ex.printStackTrace();
}
}
}
-
实现Callable接口,需要返回值类型
-
重写call方法,需要抛出异常
-
创建目标对象
-
创建执行服务:ExecutorService ser = Executors.newFixedThreadPool(1);
-
提交执行:Future result1 = ser.submit(t1);
-
获取结果:boolean r1 = result1.get()
-
关闭服务:ser.shutdownNow();
总结 -
不过实现Runnable接口与实现Callable接口的方式基本相同,只是Callable接口里定义的方法有返回值,可以声明抛出异常而已。 因此可以将实现Runnable接口和实现Callable接口归为一种方式。
-
Runnable、Callable接口的方式创建多线程,所以非常适合多个相同线程来处理同一份资源的情况,如果需要访问当前线程,则必须使用Thread.currentThread()方法
-
采用继承Thread类的方式创建多线程,因为线程类已经继承了Thread类,所以不能再继承其他父类
生命周期
线程被创建并启动以后,它既不是一启动就进入了执行状态,也不是一直处于执行状态新建(New)、就绪(Runnable)、运行(Running)、阻塞(Blocked)和死亡(Dead)5种状态
Thread.State:
-
初始(NEW):新创建了一个线程对象,但还没有调用start()方法。
-
运行(RUNNABLE):Java线程中将就绪(ready)和运行中(running)两种状态笼统的称为“运行”。
线程对象创建后,其他线程(比如main线程)调用了该对象的start()方法。该状态的线程位于可运行线程池中,等待被线程调度选中,获取CPU的使用权,此时处于就绪状态(ready)。就绪状态的线程在获得CPU时间片后变为运行中状态(running)。 -
阻塞(BLOCKED):表示线程阻塞于锁。
-
等待(WAITING):进入该状态的线程需要等待其他线程做出一些特定动作(通知或中断)。
-
超时等待(TIMED_WAITING):该状态不同于WAITING,它可以在指定的时间后自行返回。
-
终止(TERMINATED):表示该线程已经执行完毕
线程的优先级
Java提供一个线程调度器来监控程序中启动后进入就绪状态的所有线程,线程调度
器按照优先级决定应该调度哪个线程来执行。
线程的优先级用数字表示,范围从1~10.
hread.MIN_PRIORITY = 1;
Thread.MAX_PRIORITY = 10;
Thread.NORM_PRIORITY = 5;
使用以下方式改变或获取优先级
getPriority() . setPriority(int xxx)
线程方法
1
public void start() 使该线程开始执行;Java 虚拟机调用该线程的 run 方法。
2
public void run() 如果该线程是使用独立的 Runnable 运行对象构造的,则调用该 Runnable 对象的 run 方法;否则,该方法不执行任何操作并返回。
3
public final void setName(String name) 改变线程名称,使之与参数 name 相同。
4
public final void setPriority(int priority) 更改线程的优先级。
5
public final void setDaemon(boolean on) 将该线程标记为守护线程或用户线程。
6
public final void join(long millisec) 等待该线程终止的时间最长为 millis 毫秒。
7
public void interrupt() 中断线程。
8
public final boolean isAlive() 测试线程是否处于活动状态。
9
public static void yield() 线程礼让: 暂停当前正在执行的线程对象,并执行其他线程。
10
public static void sleep(long millisec) 线程休眠: 在指定的毫秒数内让当前正在执行的线程休眠(暂停执行),此操作受到系统计时器和调度程序精度和准确性的影响。
11
public static boolean holdsLock(Object x) 当且仅当当前线程在指定的对象上保持监视器锁时,才返回 true。
12
public static Thread currentThread() 返回对当前正在执行的线程对象的引用。
13
public static void dumpStack() 将当前线程的堆栈跟踪打印至标准错误流。
停止线程:jdk提供了stop,但不建议使用可以自己去停止它
守护(daemon)线程
线程分为前台线程与后台线程(用户线程与守护线程)
虚拟机必须确保用户线程执行完毕
虚拟机不用等待守护线程执行完毕
并发,队列 和 锁,死锁
同一个对象被多个线程同时操作就是并发。
多个线程访问同一个对象, 并且某些线程还想修改这个对象 .这时候我们就需要线程同步 . 线程同步其实就是一种等待机制 , 多个需要同时访问此对象的线程进入这个对象的等待池 形成队列, 等待前面线程使用完毕 , 下一个线
程再使用。
上面的并发问题我们会加一个锁(synchronized)来解决。我锁上门的时候你们都别进来。但是加上锁之后会有以下为:
-
一个线程持有锁会导致其他所有需要此锁的线程挂起 ;
-
在多线程竞争下 , 加锁 , 释放锁会导致比较多的上下文切换 和 调度延时,引起性能问题 ;
-
如果一个优先级高的线程等待一个优先级低的线程释放锁 会导致优先级倒置 , 引起性能问题 .
java 死锁产生的四个必要条件:
-
1、互斥使用,即当资源被一个线程使用(占有)时,别的线程不能使用
-
2、不可抢占,资源请求者不能强制从资源占有者手中夺取资源,资源只能由资源占有者主动释放。
-
3、请求和保持,即当资源请求者在请求其他的资源的同时保持对原有资源的占有。
-
4、循环等待,即存在一个等待队列:P1占有P2的资源,P2占有P3的资源,P3占有P1的资源。这样就形成了一个等待环路。
死锁的情况下如果打破上述任何一个条件,便可让死锁消失。
import java.util.Date; public class LockTest { public static String obj1 = "obj1"; public static String obj2 = "obj2"; public static void main(String[] args) { LockA la = new LockA(); new Thread(la).start(); LockB lb = new LockB(); new Thread(lb).start(); } }class LockA implements Runnable{ public void run() { try { System.out.println(new Date().toString() + " LockA 开始执行"); while(true){ synchronized (LockTest.obj1) { System.out.println(new Date().toString() + " LockA 锁住 obj1"); Thread.sleep(3000); // 此处等待是给B能锁住机会 synchronized (LockTest.obj2) { System.out.println(new Date().toString() + " LockA 锁住 obj2"); Thread.sleep(60 * 1000); // 为测试,占用了就不放 } } } } catch (Exception e) { e.printStackTrace(); } } }class LockB implements Runnable{ public void run() { try { System.out.println(new Date().toString() + " LockB 开始执行"); while(true){ synchronized (LockTest.obj2) { System.out.println(new Date().toString() + " LockB 锁住 obj2"); Thread.sleep(3000); // 此处等待是给A能锁住机会 synchronized (LockTest.obj1) { System.out.println(new Date().toString() + " LockB 锁住 obj1"); Thread.sleep(60 * 1000); // 为测试,占用了就不放 } } } } catch (Exception e) { e.printStackTrace(); } } }
结果
Tue May 05 10:51:06 CST 2015 LockB 开始执行
Tue May 05 10:51:06 CST 2015 LockA 开始执行
Tue May 05 10:51:06 CST 2015 LockB 锁住 obj2
Tue May 05 10:51:06 CST 2015 LockA 锁住 obj1
解决
import java.util.Date;import java.util.concurrent.Semaphore;import java.util.concurrent.TimeUnit;
public class UnLockTest { public static String obj1 = "obj1"; public static final Semaphore a1 = new Semaphore(1); public static String obj2 = "obj2"; public static final Semaphore a2 = new Semaphore(1);
public static void main(String[] args) {
LockAa la = new LockAa(); new Thread(la).start();
LockBb lb = new LockBb(); new Thread(lb).start();
}
}class LockAa implements Runnable { public void run() { try {
System.out.println(new Date().toString() + " LockA 开始执行"); while (true) { if (UnLockTest.a1.tryAcquire(1, TimeUnit.SECONDS)) {
System.out.println(new Date().toString() + " LockA 锁住 obj1"); if (UnLockTest.a2.tryAcquire(1, TimeUnit.SECONDS)) {
System.out.println(new Date().toString() + " LockA 锁住 obj2");
Thread.sleep(60 * 1000); // do something
}else{
System.out.println(new Date().toString() + "LockA 锁 obj2 失败");
}
}else{
System.out.println(new Date().toString() + "LockA 锁 obj1 失败");
}
UnLockTest.a1.release(); // 释放
UnLockTest.a2.release();
Thread.sleep(1000); // 马上进行尝试,现实情况下do something是不确定的
}
} catch (Exception e) {
e.printStackTrace();
}
}
}class LockBb implements Runnable { public void run() { try {
System.out.println(new Date().toString() + " LockB 开始执行"); while (true) { if (UnLockTest.a2.tryAcquire(1, TimeUnit.SECONDS)) {
System.out.println(new Date().toString() + " LockB 锁住 obj2"); if (UnLockTest.a1.tryAcquire(1, TimeUnit.SECONDS)) {
System.out.println(new Date().toString() + " LockB 锁住 obj1");
Thread.sleep(60 * 1000); // do something
}else{
System.out.println(new Date().toString() + "LockB 锁 obj1 失败");
}
}else{
System.out.println(new Date().toString() + "LockB 锁 obj2 失败");
}
UnLockTest.a1.release(); // 释放
UnLockTest.a2.release();
Thread.sleep(10 * 1000); // 这里只是为了演示,所以tryAcquire只用1秒,而且B要给A让出能执行的时间,否则两个永远是死锁
}
} catch (Exception e) {
e.printStackTrace();
}
}
}
Tue May 05 10:59:13 CST 2015 LockA 开始执行
Tue May 05 10:59:13 CST 2015 LockB 开始执行
Tue May 05 10:59:13 CST 2015 LockB 锁住 obj2
Tue May 05 10:59:13 CST 2015 LockA 锁住 obj1
Tue May 05 10:59:14 CST 2015LockB 锁 obj1 失败
Tue May 05 10:59:14 CST 2015LockA 锁 obj2 失败
Tue May 05 10:59:15 CST 2015 LockA 锁住 obj1
Tue May 05 10:59:15 CST 2015 LockA 锁住 obj2
-
synchronized 与 Lock 的对比
Lock是显式锁(手动开启和关闭锁,别忘记关闭锁)synchronized是隐式锁,出了作用域自动释放 -
Lock只有代码块锁,synchronized有代码块锁和方法锁使用Lock锁,JVM将花费较少的时间来调度线程,性能更好。并且具有更好的扩展性(提供更多的子类)
-
优先使用顺序:
Lock > 同步代码块(已经进入了方法体,分配了相应资源)> 同步方法(在方
法体之外)
线程通讯
线程通信的目标是使线程间能够互相发送信号。另一方面,线程通信使线程能够等待其他线程的信号。
线程的通信方式
-
volatile
-
Wait/Notify机制
-
join方式
-
threadLocal
-
CountDownLatch 并发工具
-
CyclicBarrier 并发工具
volatile
public class Volatile implements Runnable { private static volatile Boolean flag = true; @Override
public void run() { while (flag) {
System.out.println(Thread.currentThread().getName() + " - 执行");
}
System.out.println("线程结束");
} public static void main(String[] args) {
Thread t = new Thread(new Volatile());
t.start(); try {
Thread.sleep(5);
flag = false;
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
Thread-0 - 执行
Thread-0 - 执行
Thread-0 - 执行
Thread-0 - 执行
Thread-0 - 执行
线程结束
**WaitNotify **
public class WaitNotify { // 状态锁
private static Object lock = new Object(); private static Integer i = 0; public void odd() { while (i < 10) { synchronized (lock) { if (i % 2 == 1) {
System.out.println(Thread.currentThread().getName() + " - " + i); try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
i++;
lock.notify();
} else { try {
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
} public void even() { while (i < 10) { synchronized (lock) { if (i % 2 == 0) {
System.out.println(Thread.currentThread().getName() + " - " + i); try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
i++;
lock.notify();
} else { try {
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
} public static void main(String[] args) {
WaitNotify waitNotify = new WaitNotify();
Thread t1 = new Thread(() -> waitNotify.odd(), "线程1");
Thread t2 = new Thread(() -> waitNotify.even(), "线程2");
t1.start();
t2.start();
}
}
join
package threadCommunication;
public class JoinTest extends Thread { @Override
public void run() { try { int sleepTime = (int) (Math.random() * 1000);
System.out.println(sleepTime);
Thread.sleep(sleepTime);
System.out.println("JoinTest end");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public static void main(String[] args) throws InterruptedException {
JoinTest j = new JoinTest();
j.start();
j.join();//当前线程main等待线程对象(j)销毁
System.out.println("main end");
}
threadLocal
package sync;
public class SequenceNumber {
// 定义匿名子类创建ThreadLocal的变量
private static ThreadLocal<Integer> seqNum = new ThreadLocal<Integer>() {
// 覆盖初始化方法
public Integer initialValue() {
return 0;
}
};
// 下一个序列号
public int getNextNum() {
seqNum.set(seqNum.get() + 1);
return seqNum.get();
}
private static class TestClient extends Thread {
private SequenceNumber sn;
public TestClient(SequenceNumber sn) {
this.sn = sn;
}
// 线程产生序列号
public void run() {
for (int i = 0; i < 3; i++) {
System.out.println("thread[" + Thread.currentThread().getName() + "] sn[" + sn.getNextNum() + "]");
}
}
}
/**
* @param args
*/
public static void main(String[] args) {
SequenceNumber sn = new SequenceNumber();
// 三个线程产生各自的序列号
TestClient t1 = new TestClient(sn);
TestClient t2 = new TestClient(sn);
TestClient t3 = new TestClient(sn);
t1.start();
t2.start();
t3.start();
}