synchronized详解

136 阅读19分钟

写在前面

在前面的文章中,对volatile进行了一个详细的总结,从jvm到cpu层面进行了一个详细的介绍,了解了volatile可以保存可见性和有序性,但是它并不保证原子性,需要通过synchronized和lock来保证原子性。这篇来对synchronized进行一个总结。

synchronized原理

synchronized是基于JVM内置锁实现,通过内部对象Monitor(监视器锁)实现,基于进入与退出Monitor对象实现方法与代码块同步,监视器锁的实现依赖底层操作系统的Mutex lock(互斥锁)实现,它是一个重量级锁性能较低。VM内置锁在1.5之后版本做了重大的优化,如锁粗化(Lock Coarsening)、锁消除(Lock Elimination)、轻量级锁(Lightweight Locking)、偏向锁(Biased Locking)、适应性自旋(Adaptive Spinning)等技术来减少锁操作的开销,内置锁的并发性能已经基本与Lock持平。

public class sync {

    final static Object object = new Object();

    public static void main(String[] args){
        synchronized (object){
            System.out.println();
        }
    }
}

image.png
如图所示:synchronized关键字被编译成字节码后会被翻译成monitorentermonitorexit两条指令分别在同步块逻辑代码的起始位置与结束位置。
每个同步对象都有一个自己的Monitor(监视器锁),加锁过程如下图所示:
image.png
任何一个对象都有一个Monitor与之关联,当且一个Monitor被持有后,它将处于锁定状态。 Synchronized在JVM里的实现都是 基于进入和退出Monitor对象来实现方法同步和代码块同步,虽然具体实现细节不一样,但是都可以通过成对的MonitorEnter和MonitorExit指令来实现。

  • monitorenter:每个对象都是一个监视器锁(monitor)。- 当monitor被占用时就会处于锁定状态,线程执行monitorenter指令时尝试获取monitor的所有权,过程如下:
  1. 如果monitor的进入数为0,则该线程进入monitor,然后将进入数设置为1,该线程即为monitor的所有者;
  2. 如果线程已经占有该monitor,只是重新进入,则进入monitor的进入数加1;
  3. 如果其他线程已经占用了monitor,则该线程进入阻塞状态,直到monitor的进入数为0,再重新尝试获取monitor的所有权;
  • monitorexit:执行monitorexit的线程必须是objectref所对应的monitor的所有者。指令执行时,monitor的进入数减1,如果减1后进入数为0,那线程退出monitor,不再是这个monitor的所有者。 其他被这个monitor阻塞的线程可以尝试去获取这个 monitor 的所有权。 monitorexit,指令出现了两次,第1次为同步正常退出释放锁;第2次为发生异步退出释放锁;
    Synchronized的语义底层是通过一个monitor的对象来完成,其实wait/notify等方法也依赖于monitor对象,这就是为什么只有在同步的块或者方法中才能调用wait/notify等方法,否则会抛出java.lang.IllegalMonitorStateException的异常的原因。
public class SynchronizedMethod {
    public synchronized void method() {
        System.out.println("Hello World!");
    }
}

image.png 从编译的结果来看,方法的同步并没有通过指令 monitorenter 和 monitorexit 来完成(理论上其实也可以通过这两条指令来实现),不过相对于普通方法,其常量池中多了 ACC_SYNCHRONIZED 标示符。JVM就是根据该标示符来实现方法的同步的。
当方法调用时,调用指令将会检查方法的 ACC_SYNCHRONIZED 访问标志是否被设置,如果设置了,执行线程将先获取monitor,获取成功之后才能执行方法体,方法执行完后再释放monitor。在方法执行期间,其他任何线程都无法再获得同一个monitor对象。
两种同步方式本质上没有区别,只是方法的同步是一种隐式的方式来实现,无需通过字节码来完成。两个指令的执行是JVM通过调用操作系统的互斥原语mutex来实现,被阻塞的线程会被挂起、等待重新调度,会导致“用户态和内核态”两个态之间来回切换,对性能有较大影响。
说了这么多那什么是monitor?可以把它理解为一个同步工具,也可以描述为一种同步机制,它通常被描述为一个对象。与一切皆对象一样,所有的Java对象是天生的Monitor,每一个Java对象都有成为Monitor的潜质,因为在Java的设计中 ,每一个Java对象自打娘胎里出来就带了一把看不见的锁,它叫做内部锁或者Monitor锁。也就是通常说Synchronized的对象锁,MarkWord锁标识位为10,其中指针指向的是Monitor对象的起始地址。 在Java虚拟机(HotSpot)中,Monitor是由ObjectMonitor实现的,其主要数据结构如下(位于HotSpot虚拟机源码ObjectMonitor.hpp文件,C++实现的):

ObjectMonitor() {
    _header       = NULL;
    _count        = 0; // 记录个数
    _waiters      = 0,
    _recursions   = 0;
    _object       = NULL;
    _owner        = NULL;
    _WaitSet      = NULL; // 处于wait状态的线程,会被加入到_WaitSet
    _WaitSetLock  = 0 ;
    _Responsible  = NULL ;
    _succ         = NULL ;
    _cxq          = NULL ;
    FreeNext      = NULL ;
    _EntryList    = NULL ; // 处于等待锁block状态的线程,会被加入到该列表
    _SpinFreq     = 0 ;
    _SpinClock    = 0 ;
    OwnerIsThread = 0 ;
  }

ObjectMonitor中有两个队列,_WaitSet 和 _EntryList ,用来保存ObjectWaiter对象列表( 每个等待锁的线程都会被封装成ObjectWaiter对象 ),_owner指向持有ObjectMonitor对象的线程,当多个线程同时访问一段同步代码时:

  1. 首先会进入 _EntryList 集合,当线程获取到对象的monitor后,进入 _Owner区域并把monitor中的owner变量设置为当前线程,同时monitor中的计数器count加1;
  2. 若线程调用 wait() 方法,将释放当前持有的monitor,owner变量恢复为null,count自减1,同时该线程进入 WaitSet集合中等待被唤醒;
  3. 若当前线程执行完毕,也将释放monitor(锁)并复位count的值,以便其他线程进入获取monitor(锁); 同时,Monitor对象存在于每个Java对象的对象头Mark Word中(存储的指针的指向)Synchronized锁便是通过这种方式获取锁的,也是为什么Java中任意对象可以作为锁的原因,同时notify/notifyAll/wait等方法会使用到Monitor锁对象,所以必须在同步代码块中使用。监视器Monitor有两种同步方式:互斥与协作。多线程环境下线程之间如果需要共享数据,需要解决互斥访问数据的问题,监视器可以确保监视器上的数据在同一时刻只会有一个线程在访问

对象的内存布局

image.png
如图所示,对象在内存中存储可以分为三个部分:

  • 对象头(Header):比如 hash码,对象所属的年代,对象锁,锁状态标志,偏向锁(线程)ID,偏向时间,数组长度(数组对象)等。Java对象头一般占有2个机器码(在32位虚拟机中,1个机器码等于4字节,也就是32bit,在64位虚拟机中,1个机器码是8个字节,也就是64bit),但是 如果对象是数组类型,则需要3个机器码,因为JVM虚拟机可以通过Java对象的元数据信息确定Java对象的大小,但是无法从数组的元数据来确认数组的大小,所以用一块来记录数组长度。
  • 实例数据(Instance Data): 存放类的属性数据信息,包括父类的属性信息。
  • 对齐填充(Padding):由于虚拟机要求对象起始地址必须是8字节的整倍数。填充数据不是必须存在,仅仅是为了字节对齐。

对象头

mark word

用于存储对象自身的运行时数据, 如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等等,它是实现轻量级锁和偏向锁的关键image.png 如图所示,最后2bit表示的是锁的状态,无锁态和偏向锁分别用来3bit来区分。

synchronized锁的膨胀升级过程

image.png
如图所示,锁的状态总共有四种,无锁状态、偏向锁、轻量级锁和重量级锁。随着锁的竞争,锁可以从偏向锁升级到轻量级锁,再升级的重量级锁,但是锁的升级是单向的,也就是说只能从低到高升级,不会出现锁的降级。从JDK 1.6 中默认是开启偏向锁和轻量级锁的,可以通过-XX:-UseBiasedLocking来禁用偏向锁。下图为锁的升级全过程:
synchronized锁实现与升级过程.png 引入依赖

<dependency>
   <groupId>org.openjdk.jol</groupId>
   <artifactId>jol-core</artifactId>
   <version>0.10</version>
</dependency>
public class ObjectHead {

    public static void main(String[] args) throws InterruptedException {
        Object o = new Object();
        System.out.println(ClassLayout.parseInstance(o).toPrintable());
    }
}

输出结果:

java.lang.Object object internals:
 OFFSET  SIZE   TYPE DESCRIPTION                               VALUE
      0     4        (object header)                           01 00 00 00 (00000001 00000000 00000000 00000000) (1)
      4     4        (object header)                           00 00 00 00 (00000000 00000000 00000000 00000000) (0)
      8     4        (object header)                           e5 01 00 f8 (11100101 00000001 00000000 11111000) (-134217243)
     12     4        (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal + 4 bytes external = 4 bytes total

第一行0-4字节即是mark word,可以看到此时对象o,没有加锁,VALUE所对应的32位比特位,最后三位是001(大小端),代表无锁态

public class ObjectHead {

    public static void main(String[] args) throws InterruptedException {
        TimeUnit.SECONDS.sleep(5);
        Object o = new Object();
        System.out.println(ClassLayout.parseInstance(o).toPrintable());
        synchronized (o) {
            System.out.println(ClassLayout.parseInstance(o).toPrintable());
        }
    }
}

输出结果:

java.lang.Object object internals:
 OFFSET  SIZE   TYPE DESCRIPTION                               VALUE
      0     4        (object header)                           05 00 00 00 (00000101 00000000 00000000 00000000) (5)
      4     4        (object header)                           00 00 00 00 (00000000 00000000 00000000 00000000) (0)
      8     4        (object header)                           e5 01 00 f8 (11100101 00000001 00000000 11111000) (-134217243)
     12     4        (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal + 4 bytes external = 4 bytes total

java.lang.Object object internals:
 OFFSET  SIZE   TYPE DESCRIPTION                               VALUE
      0     4        (object header)                           05 48 5d 03 (00000101 01001000 01011101 00000011) (56444933)
      4     4        (object header)                           00 00 00 00 (00000000 00000000 00000000 00000000) (0)
      8     4        (object header)                           e5 01 00 f8 (11100101 00000001 00000000 11111000) (-134217243)
     12     4        (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal + 4 bytes external = 4 bytes total

在上面的代码中,对程序进行了5s的休眠,这是因为jvm在启动的时候会延迟开启偏向锁,因为jvm在启动的时候,内部也存在大量的线程进行同步操作,为了减少jvm内部锁升级,影响效率,为了优化jvm启动,即会延迟开启偏向锁。从上面的代码中可以看到,对对象o进行了加锁操作,此时输出结果最后三个比特位是101,即偏向锁状态。但是没有对对象o进行加锁操作的时候,会发现输出的最后三个比特位也是101,以第一个代码来看,应该是输出001无锁态才对。这里的101偏向锁,也叫匿名偏向或者可偏向状态,即预备偏向,随时可以准备偏向,任何线程要来加锁都可以,所以,除了最后三位是101,其他比特位均为0,说明还未被线程持有。

@Slf4j
public class BasicLock {
    public static void main(String[] args) {
        try {
            Thread.sleep(5000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        Object o = new Object();
        log.info(ClassLayout.parseInstance(o).toPrintable());

        new Thread(()->{
            synchronized (o){
                log.info(ClassLayout.parseInstance(o).toPrintable());
            }
        }).start();

        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        log.info(ClassLayout.parseInstance(o).toPrintable());
        new Thread(()->{
            synchronized (o){
                log.info(ClassLayout.parseInstance(o).toPrintable());
            }
        }).start();


    }
}

输出结果:

09:35:09.384 [main] INFO com.yg.edu.T0_BasicLock - java.lang.Object object internals:
 OFFSET  SIZE   TYPE DESCRIPTION                               VALUE
      0     4        (object header)                           05 00 00 00 (00000101 00000000 00000000 00000000) (5)
      4     4        (object header)                           00 00 00 00 (00000000 00000000 00000000 00000000) (0)
      8     4        (object header)                           e5 01 00 f8 (11100101 00000001 00000000 11111000) (-134217243)
     12     4        (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal + 4 bytes external = 4 bytes total

09:35:09.387 [Thread-0] INFO com.yg.edu.T0_BasicLock - java.lang.Object object internals:
 OFFSET  SIZE   TYPE DESCRIPTION                               VALUE
      0     4        (object header)                           05 08 34 2b (00000101 00001000 00110100 00101011) (724830213)
      4     4        (object header)                           00 00 00 00 (00000000 00000000 00000000 00000000) (0)
      8     4        (object header)                           e5 01 00 f8 (11100101 00000001 00000000 11111000) (-134217243)
     12     4        (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal + 4 bytes external = 4 bytes total

09:35:11.402 [main] INFO com.yg.edu.T0_BasicLock - java.lang.Object object internals:
 OFFSET  SIZE   TYPE DESCRIPTION                               VALUE
      0     4        (object header)                           05 08 34 2b (00000101 00001000 00110100 00101011) (724830213)
      4     4        (object header)                           00 00 00 00 (00000000 00000000 00000000 00000000) (0)
      8     4        (object header)                           e5 01 00 f8 (11100101 00000001 00000000 11111000) (-134217243)
     12     4        (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal + 4 bytes external = 4 bytes total

09:35:11.403 [Thread-1] INFO com.yg.edu.T0_BasicLock - java.lang.Object object internals:
 OFFSET  SIZE   TYPE DESCRIPTION                               VALUE
      0     4        (object header)                           20 f0 17 2c (00100000 11110000 00010111 00101100) (739766304)
      4     4        (object header)                           00 00 00 00 (00000000 00000000 00000000 00000000) (0)
      8     4        (object header)                           e5 01 00 f8 (11100101 00000001 00000000 11111000) (-134217243)
     12     4        (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal + 4 bytes external = 4 bytes total


Process finished with exit code 0

查看输出结果,可以发现前三个输出均是偏向锁,第四个输出为轻量级锁,锁升级了。偏向锁一旦偏向某个线程,如果没有被其他线程持有,那么就会保留上一次线程的记录。这是第三个输出和第二个输出结果一样的原因。这是偏向锁升级到轻量级锁的过程。

public class heavyWeightMonitor {

    public static void main(String[] args) throws InterruptedException {
        Thread.sleep(5000);
        Object a = new Object();

        Thread thread1 = new Thread(){
            @Override
            public void run() {
                synchronized (a){
                    System.out.println("thread1 locking");
                    System.out.println(ClassLayout.parseInstance(a).toPrintable());
                    try {
                        //让线程晚点儿死亡,造成锁的竞争
                        Thread.sleep(2000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        };
        Thread thread2 = new Thread(){
            @Override
            public void run() {
                synchronized (a){
                    System.out.println("thread2 locking");
                    System.out.println(ClassLayout.parseInstance(a).toPrintable());
                    try {
                        Thread.sleep(2000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        };
        thread1.start();
        thread2.start();
    }

}
thread1 locking
java.lang.Object object internals:
 OFFSET  SIZE   TYPE DESCRIPTION                               VALUE
      0     4        (object header)                           fa 37 1c 26 (11111010 00110111 00011100 00100110) (639383546)
      4     4        (object header)                           00 00 00 00 (00000000 00000000 00000000 00000000) (0)
      8     4        (object header)                           e5 01 00 f8 (11100101 00000001 00000000 11111000) (-134217243)
     12     4        (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal + 4 bytes external = 4 bytes total

thread2 locking
java.lang.Object object internals:
 OFFSET  SIZE   TYPE DESCRIPTION                               VALUE
      0     4        (object header)                           fa 37 1c 26 (11111010 00110111 00011100 00100110) (639383546)
      4     4        (object header)                           00 00 00 00 (00000000 00000000 00000000 00000000) (0)
      8     4        (object header)                           e5 01 00 f8 (11100101 00000001 00000000 11111000) (-134217243)
     12     4        (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal + 4 bytes external = 4 bytes total

输出结果可以看到,两个线程同时竞争一个锁,会使锁升级为重量级锁

偏向锁

偏向锁是Java 6之后加入的新锁,它是一种针对加锁操作的优化手段,经过研究发现,在大多数情况下,锁不仅不存在多线程竞争,而且总是由同一线程多次获得,因此为了减少同一线程获取锁(会涉及到一些CAS操作,耗时)的代价而引入偏向锁。偏向锁的核心思想是,如果一个线程获得了锁,那么锁就进入偏向模式,此时Mark Word 的结构也变为偏向锁结构,当这个线程再次请求锁时,无需再做任何同步操作,即获取锁的过程,这样就省去了大量有关锁申请的操作,从而也就提供程序的性能。所以,对于没有锁竞争的场合,偏向锁有很好的优化效果,毕竟极有可能连续多次是同一个线程申请相同的锁。但是对于锁竞争比较激烈的场合,偏向锁就失效了,因为这样场合极有可能每次申请锁的线程都是不相同的,因此这种场合下不应该使用偏向锁,否则会得不偿失,需要注意的是,偏向锁失败后,并不会立即膨胀为重量级锁,而是先升级为轻量级锁。默认开启偏向锁。

轻量级锁

倘若偏向锁失败,虚拟机并不会立即升级为重量级锁,它还会尝试使用一种称为轻量级锁的优化手段(1.6之后加入的),此时Mark Word 的结构也变为轻量级锁的结构。轻量级锁能够提升程序性能的依据是“对绝大部分的锁,在整个同步周期内都不存在竞争”,注意这是经验数据。需要了解的是,轻量级锁所适应的场景是线程交替执行同步块的场合,如果存在同一时间访问同一锁的场合,就会导致轻量级锁膨胀为重量级锁。

自旋锁

轻量级锁失败后,虚拟机为了避免线程真实地在操作系统层面挂起,还会进行一项称为自旋锁的优化手段。这是基于在大多数情况下,线程持有锁的时间都不会太长,如果直接挂起操作系统层面的线程可能会得不偿失,毕竟操作系统实现线程之间的切换时需要从用户态转换到核心态,这个状态之间的转换需要相对比较长的时间,时间成本相对较高,因此自旋锁会假设在不久将来,当前的线程可以获得锁,因此虚拟机会让当前想要获取锁的线程做几个空循环(这也是称为自旋的原因),一般不会太久,可能是50个循环或100循环,在经过若干次循环后,如果得到锁,就顺利进入临界区。如果还不能获得锁,那就会将线程在操作系统层面挂起,这就是自旋锁的优化方式,这种方式确实也是可以提升效率的。最后没办法也就只能升级为重量级锁了。

锁消除

消除锁是虚拟机另外一种锁的优化,这种优化更彻底,Java虚拟机在JIT编译时(可以简单理解为当某段代码即将第一次被执行时进行编译,又称即时编译),通过对运行上下文的扫描,去除不可能存在共享资源竞争的锁,通过这种方式消除没有必要的锁,可以节省毫无意义的请求锁时间,如下StringBuffer的append是一个同步方法,但是在add方法中的StringBuffer属于一个局部变量,并且不会被其他线程所使用,因此StringBuffer不可能存在共享资源竞争的情景,JVM会自动将其锁消除。锁消除的依据是逃逸分析的数据支持。

// 锁消除
private void method2(){
    Object object = new Object();
    synchronized (object){
        System.out.println();
    }
}

Object object = new Object();
// 锁粗化
private void method3(){
    synchronized (object){
        System.out.println();
    }
    synchronized (object){
        System.out.println();
    }
    synchronized (object){
        System.out.println();
    }
}

逃逸分析

使用逃逸分析,编译器可以对代码做如下优化:

  • 同步省略。如果一个对象被发现只能从一个线程被访问到,那么对于这个对象的操作可以不考虑同步。
  • 将堆分配转化为栈分配。如果一个对象在子程序中被分配,要使指向该对象的指针永远不会逃逸,对象可能是栈分配的候选,而不是堆分配。
  • 分离对象或标量替换。有的对象可能不需要作为一个连续的内存结构存在也可以被访问到,那么对象的部分(或全部)可以不存储在内存,而是存储在CPU寄存器中。