objc_init
查看源码
-
environ_init:读取影响运行时的环境变量,如果需要还可以打印环境变量帮助export OBJC_HELP=1 -
tls_init:关于线程key的绑定,比如每个线程数据的析构函数 -
static_init:运行C++静态构造函数。在dyld调用我们的静态构造函数之前,lib会调用_objc_init先调用自己的C++构造函数 -
runtime_init:runtime运行时环境初始化,里面主要是unattachedCategories和allocatedClasses两张表 -
exception_init:初始化libobjc库的异常处理系统 -
cache_t::init:缓存条件初始化 -
_imp_implementationWithBlock_init:启动回调机制。通常不会做什么,因为所有的初始化都是惰性的,但是对于某些进程,会迫不及待的加载trampolines dylib -
_dyld_objc_notify_register:注册map_images、load_images、unmap_image的回调
environ_init
void environ_init(void)
{
// Print OBJC_HELP and OBJC_PRINT_OPTIONS output.
if(PrintHelp || PrintOptions) {
...
if (PrintOptions) {
_objc_inform("OBJC_PRINT_OPTIONS is set");
}
for(size_t i = 0; i < sizeof(Settings)/sizeof(Settings[0]); i++){
const option_t *opt = &Settings[i];
if(PrintHelp) _objc_inform("%s: %s", opt->env, opt->help);
if(PrintOptions && *opt->var) _objc_inform("%s is set", opt->env);
}
}
}
- 可以看到是否打印环境变量是通过
PrintHelp || PrintOptions控制的。
有三种方式打印出当前的环境变量配置。
1, 修改代码输出日志信息
//在if(PrintHelp || PrintOptions)前面加
for (size_t i = 0; i < sizeof(Settings)/sizeof(Settings[0]); i++) {
const option_t *opt = &Settings[i];
_objc_inform("%s: %s", opt->env, opt->help);
_objc_inform("%s is set", opt->env);
}
输出结果
2, 终端输出
export OBJC_HELP=1
- 先导出
OBJC_HELP,然后执行一个终端命令就会打印出环境变量了。
3, 源文件查看
- 在
objc源码objc-env.h文件中可以查看
验证环境变量
在环境变量中有两个配置:OBJC_DISABLE_NONPOINTER_ISA与OBJC_PRINT_LOAD_METHODS。直接在scheme->Arguments->Environment Variables中配置。
OBJC_DISABLE_NONPOINTER_ISA:配置是否开启NONPOINTER指针。
(lldb) x/4gx person
0x100705e70: 0x011d800100008211 0x0000000000000000
0x100705e80: 0x0000000000000000 0xf04d6221bc37e2af
(lldb) p/t 0x011d800100008211
(long) $1 = 0b0000000100011101100000000000000100000000000000001000001000010001
- 可以看到
isa最后一位在开启前是1开启后变为了0。也就是是否是纯指针。 OBJC_PRINT_LOAD_METHODS:打印所有实现了+ load方法的类信息。
所以直接配置就可以知道哪些类实现了+ load方法。可以监控所有的+load方法,从而处理启动优化。
tls_init
关于线程key的绑定,比如线程数据的析构函数。
void tls_init(void)
{
#if SUPPORT_DIRECT_THREAD_KEYS
pthread_key_init_np(TLS_DIRECT_KEY, &_objc_pthread_destroyspecific);
#else
_objc_pthread_key = tls_create(&_objc_pthread_destroyspecific);
#endif
}
static_init
运行C++静态构造函数。在dyld调用静态构造函数之前,libc 会调用 _objc_init()
static void static_init()
{
//这两个是根据SECTION_TYPE不同读取不同的section,
//当为S_MOD_INIT_FUNC_POINTERS时读取__mod_init_funcs,
//当为S_INIT_FUNC_OFFSETS(0x16)时读取__init_offsets
size_t count;
//查找__objc_init_func,对应macho文件中的 __DATA __mod_init_func。
//调用c++构造函数,这里是通过下标平移获取
auto inits = getLibobjcInitializers(&_mh_dylib_header, &count);
for (size_t i = 0; i < count; i++) {
inits[i]();
}
//查找__TEXT __objc_init_offs,
//对应macho文件中的 __TEXT __init_offsets
//调用c++构造函数,通过偏移值获取
auto offsets = getLibobjcInitializerOffsets(&_mh_dylib_header, &count);
for (size_t i = 0; i < count; i++) {
UnsignedInitializer init(offsets[i]);
init();
}
}
GETSECT(getLibobjcInitializers, UnsignedInitializer, "__objc_init_func");
uint32_t *getLibobjcInitializerOffsets(const headerType *mhdr, size_t *outCount) {
unsigned long byteCount = 0;
uint32_t *offsets = (uint32_t *)getsectiondata(mhdr, "__TEXT", "__objc_init_offs", &byteCount);
if (outCount) *outCount = byteCount / sizeof(uint32_t);
return offsets;
}
-
全局静态
c++函数调用,这里只是调用objc自己的。在dyld doModInitFunctions调用之前,相当于objc的c++构造函数是自己调用的,不是dyld调用的。因为dyld调用的时机太晚了,objc对这个section进行了替换,所以后续dyld`不会调用到这块。 -
内部有两个逻辑一个是通过
__mod_init_funcs,一个是通过__init_offsets从macho文件读取c++构造函数
上面对macho文件的读取发现和macho文件是对不上的,在dosect (markgc.cpp)中发现了对macho文件对应的section数据进行的映射修改:
template <typename P>
void dosect(uint8_t *start, macho_section<P> *sect)
{
if (debug) printf("section %.16s from segment %.16s\n",
sect->sectname(), sect->segname());
// Strip S_MOD_INIT/TERM_FUNC_POINTERS. We don't want dyld to call
// our init funcs because it is too late, and we don't want anyone to
// call our term funcs ever.
if (segnameStartsWith(sect->segname(), "__DATA") &&
sectnameEquals(sect->sectname(), "__mod_init_func"))
{
// section type 0 is S_REGULAR
sect->set_flags(sect->flags() & ~SECTION_TYPE);
sect->set_sectname("__objc_init_func");
if (debug) printf("disabled __mod_init_func section\n");
}
if (segnameStartsWith(sect->segname(), "__TEXT") &&
sectnameEquals(sect->sectname(), "__init_offsets"))
{
// section type 0 is S_REGULAR
sect->set_flags(sect->flags() & ~SECTION_TYPE);
sect->set_sectname("__objc_init_offs");
if (debug) printf("disabled __mod_init_func section\n");
}
if (segnameStartsWith(sect->segname(), "__DATA") &&
sectnameEquals(sect->sectname(), "__mod_term_func"))
{
// section type 0 is S_REGULAR
sect->set_flags(sect->flags() & ~SECTION_TYPE);
sect->set_sectname("__objc_term_func");
if (debug) printf("disabled __mod_term_func section\n");
}
}
-
__mod_init_func被修改称为__objc_init_func。SECTION_TYPE为S_MOD_INIT_FUNC_POINTERS(0x9) -
__init_offsets被修改称为__objc_init_offs。SECTION_TYPE为S_INIT_FUNC_OFFSETS(0x16)
他们的区别是获取func的方式不同:
//S_MOD_INIT_FUNC_POINTERS
Initializer* inits = (Initializer*)(sect->addr + fSlide);
Initializer func = inits[j];
//S_INIT_FUNC_OFFSETS
Initializer func = (Initializer)((uint8_t*)this->machHeader() + funcOffset);
-
__mod_term_func被修改成为__objc_term_func。这个也就是Terminators。SECTION_TYPE为S_MOD_TERM_FUNC_POINTERS(0xa)。这个实现了destructor函数就有了。 -
这个函数最终是被自己的
main所调用的。注释中已经说明不想被dyld调用,所以进行了strip,因为dyld调用的时机太晚了。 -
通过查看
macho文件,应该在编译期就替换了。
runtime_init
runtime运行时环境初始化,里面主要是unattachedCategories和allocatedClasses两张表
void runtime_init(void)
{
objc::unattachedCategories.init(32);//分类表的初始化
objc::allocatedClasses.init();//类表的初始化
}
exception_init
- 初始化
libobjc库的异常处理系统
void exception_init(void)
{
old_terminate = std::set_terminate(&_objc_terminate);
}
static void (*old_terminate)(void) = nil;
static void _objc_terminate(void)
{
if (PrintExceptions) {
_objc_inform("EXCEPTIONS: terminating");
}
if (! __cxa_current_exception_type()) {
// No current exception.
(*old_terminate)();
}
else {
// There is a current exception. Check if it's an objc exception.
@try {
__cxa_rethrow();
} @catch (id e) {
// It's an objc object. Call Foundation's handler, if any.
//uncaught_handler exception回调
(*uncaught_handler)((id)e);
(*old_terminate)();
} @catch (...) {
// It's not an objc object. Continue to C++ terminate.
(*old_terminate)();
}
}
}
exception_init初始化了_objc_terminate进行异常处理。- 底层在处理的时候发现了处理不了的
exp,也就是异常会调用uncaught_handler回调。
objc_uncaught_exception_handler
objc_setUncaughtExceptionHandler(objc_uncaught_exception_handler fn)
{
objc_uncaught_exception_handler result = uncaught_handler;
uncaught_handler = fn;
return result;
}
uncaught_handler=fn告诉大家可以自己传一个函数的句柄,fn可以是自己定义的函数,然后回调时,可以自己处理异常的信息
cache_t::init
缓存条件初始化
void cache_t::init()
{
#if HAVE_TASK_RESTARTABLE_RANGES
mach_msg_type_number_t count = 0;
kern_return_t kr;
while (objc_restartableRanges[count].location) {
count++;
}
//开启缓存
kr = task_restartable_ranges_register(mach_task_self(),
objc_restartableRanges, count);
if (kr == KERN_SUCCESS) return;
_objc_fatal("task_restartable_ranges_register failed (result 0x%x: %s)",
kr, mach_error_string(kr));
#endif // HAVE_TASK_RESTARTABLE_RANGES
}
_imp_implementationWithBlock_init
启动回调机制。通常不会做什么,因为所有的初始化都是惰性的,但是对于某些进程,会迫不及待地加载trampolines dylib。
void
_imp_implementationWithBlock_init(void)
{
#if TARGET_OS_OSX
if (__progname &&
(strcmp(__progname, "QtWebEngineProcess") == 0 ||
strcmp(__progname, "Steam Helper") == 0)) {
Trampolines.Initialize();
}
#endif
}
_dyld_objc_notify_register
向dyld的注册回调,_dyld_objc_notify_register仅供objc运行时调用且方法的实现在dyld源码中
void _dyld_objc_notify_register(_dyld_objc_notify_mapped mapped,
_dyld_objc_notify_init init,
_dyld_objc_notify_unmapped unmapped)
{
dyld::registerObjCNotifiers(mapped, init, unmapped);
}
void registerObjCNotifiers(_dyld_objc_notify_mapped mapped, _dyld_objc_notify_init init, _dyld_objc_notify_unmapped unmapped)
{
// record functions to call
sNotifyObjCMapped = mapped;
sNotifyObjCInit = init;
sNotifyObjCUnmapped = unmapped;
// call 'mapped' function with all images mapped so far
try {
notifyBatchPartial(dyld_image_state_bound, true, NULL, false, true);
}
catch (const char* msg) {
// ignore request to abort during registration
}
// <rdar://problem/32209809> call 'init' function on all images already init'ed (below libSystem)
for (std::vector<ImageLoader*>::iterator it=sAllImages.begin(); it != sAllImages.end(); it++) {
ImageLoader* image = *it;
if ( (image->getState() == dyld_image_state_initialized) && image->notifyObjC() ) {
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)image->machHeader(), 0, 0);
(*sNotifyObjCInit)(image->getRealPath(), image->machHeader());
}
}
}
_dyld_objc_notify_register中有3个参数
&map_images:dyld将image加载到内存中会调用该函数load_images:dyld初始化所有的image文件会调用unmap_image:将image移除时会调用
在dyld中map_images与load_images的调用没有区别。但是在这里传递的参数map_images有&操作。map_images是指针拷贝,load_images是值传递。map_images需要同步变化,否则有可能发生错乱。而load_images比较简单只是load的调用,不需要同步变化。
map_images分析
void
map_images(unsigned count, const char * const paths[],
const struct mach_header * const mhdrs[])
{
mutex_locker_t lock(runtimeLock);
return map_images_nolock(count, paths, mhdrs);
}
map_images只是对map_images_nolock的调用。
map_images_nolock
map_images_nolock的核心逻辑是要找镜像文件是怎么被加载的,也就是对class、 Protocol、 selector、 category等相关的操作。在map_images_nolock中最终发现了_read_images的调用:
void
map_images_nolock(unsigned mhCount, const char * const mhPaths[],
const struct mach_header * const mhdrs[])
{
……
if (hCount > 0) {
//类的加载映射
_read_images(hList, hCount, totalClasses, unoptimizedTotalClasses);
}
……
}
-
核心逻辑肯定在
_read_images中。 -
点击进入
_read_images方法,由于方法内代码很多有点无从下手要么一点点读,发现苹果的开发者提供了log日志
void _read_images(header_info hList, uint32_t hCount, int
totalClasses, int
unoptimizedTotalClasses)
{
... //表示省略部分代码
#define EACH_HEADER \
hIndex = 0; \
hIndex < hCount && (hi = hList[hIndex]); \
hIndex++
// 条件控制进行一次的加载
if (!doneOnce) { ... }
// 修复预编译阶段的`@selector`的混乱的问题
// 就是不同类中有相同的方法 但是相同的方法地址是不一样的
// Fix up @selector references
static size_t UnfixedSelectors;
{ ... }
ts.log("IMAGE TIMES: fix up selector references");
// 错误混乱的类处理
// Discover classes. Fix up unresolved future classes. Mark bundle classes.
bool hasDyldRoots = dyld_shared_cache_some_image_overridden();
for (EACH_HEADER) { ... }
ts.log("IMAGE TIMES: discover classes");
// 修复重映射一些没有被镜像文件加载进来的类
// Fix up remapped classes
// Class list and nonlazy class list remain unremapped.
// Class refs and super refs are remapped for message dispatching.
if (!noClassesRemapped()) { ... }
ts.log("IMAGE TIMES: remap classes");
#if SUPPORT_FIXUP
// 修复一些消息
// Fix up old objc_msgSend_fixup call sites
for (EACH_HEADER) { ... }
ts.log("IMAGE TIMES: fix up objc_msgSend_fixup");
#endif
// 当类中有协议时:`readProtocol`
// Discover protocols. Fix up protocol refs.
for (EACH_HEADER) { ... }
ts.log("IMAGE TIMES: discover protocols");
// 修复没有被加载的协议
// Fix up @protocol references
// Preoptimized images may have the right
// answer already but we don't know for sure.
for (EACH_HEADER) { ... }
ts.log("IMAGE TIMES: fix up @protocol references");
// 分类的处理
// Discover categories. Only do this after the initial category
// attachment has been done. For categories present at startup,
// discovery is deferred until the first load_images call after
// the call to _dyld_objc_notify_register completes.
if (didInitialAttachCategories) { ... }
ts.log("IMAGE TIMES: discover categories");
// 类的加载处理
// Category discovery MUST BE Late to avoid potential races
// when other threads call the new category code befor
// this thread finishes its fixups.
// +load handled by prepare_load_methods()
// Realize non-lazy classes (for +load methods and static instances)
for (EACH_HEADER) { ... }
ts.log("IMAGE TIMES: realize non-lazy classes");
// 没有被处理的类,优化那些被侵犯的类
// Realize newly-resolved future classes, in case CF manipulates them
if (resolvedFutureClasses) { ... }
ts.log("IMAGE TIMES: realize future classes");
...
#undef EACH_HEADER
}
根据log提示整理出主要流程模块
- 条件控制进行一次加载
- 修复预编译阶段的
@selector的混乱的问题 - 错误混乱的类处理
- 修复重映射一些没有被镜像文件加载进来的类
- 修复一些消息
- 当类中有协议时:
readProtocol - 修复没有被加载的协议
- 分类的处理
- 类的加载处理
- 没有被处理的类,优化那些被侵犯的类
下面就根据日志的提示重点的单独分析
- 只加载一次
if(!doneOnce) {
doneOnce = YES; // 加载一次后,就不会在进判断 doneOnce = YES
launchTime = YES;
...
// Preoptimized classes don't go in this table.
// 4/3 is NXMapTable's load factor
int namedClassesSize =
(isPreoptimized() ? unoptimizedTotalClasses : totalClasses) * 4 / 3;
//创建哈希表 存放所有的类
gdb_objc_realized_classes =
NXCreateMapTable(NXStrValueMapPrototype, namedClassesSize);
ts.log("IMAGE TIMES: first time tasks");
}
加载一次后doneOnce=YES,下次就不会在进入判断。第一次进来主要创建表gdb_objc_realized_classes,表里存放所有的类不管是实现的还是没有实现
修复@selector的混乱
static size_t UnfixedSelectors;
{
mutex_locker_t lock(selLock);
for (EACH_HEADER) {
if (hi->hasPreoptimizedSelectors()) continue;
bool isBundle = hi->isBundle();
// 从macho文件中获取方法名列表
SEL *sels = _getObjc2SelectorRefs(hi, &count);
UnfixedSelectors += count;
for (i = 0; i < count; i++) {
const char *name = sel_cname(sels[i]);
SEL sel = sel_registerNameNoLock(name, isBundle);
if (sels[i] != sel) {
sels[i] = sel;
}
}
}
}
- 因为不同类中可能相同的方法,但是虽然是相同的方法但是地址不同,对那些混乱的方法进行修复。因为方法是存放在类中,每个类中的位置是不一样的,所以方法的地址也就不一样
错误混乱的类处理
for (EACH_HEADER) {
if (! mustReadClasses(hi, hasDyldRoots)) {
// Image is sufficiently optimized that we need not call readClass()
continue;
}
//从macho中读取类列表信息
classref_t const *classlist = _getObjc2ClassList(hi, &count);
bool headerIsBundle = hi->isBundle();
bool headerIsPreoptimized = hi->hasPreoptimizedClasses();
for (i = 0; i < count; i++) {
Class cls = (Class)classlist[i];
Class newCls = readClass(cls, headerIsBundle, headerIsPreoptimized);
// 类信息发生混乱,类运行时可能发生移动,但是没有被删除,相当于常说的野指针
if (newCls != cls && newCls) {
// Class was moved but not deleted. Currently this occurs
// only when the new class resolved a future class.
// Non-lazily realize the class below.
resolvedFutureClasses = (Class *)
realloc(resolvedFutureClasses,
(resolvedFutureClassCount+1) * sizeof(Class));
resolvedFutureClasses[resolvedFutureClassCount++] = newCls;
}
}
}
cls指向的是一块地址,而newCls此时还没有赋值,系统随机给我分配一块脏地址
Class readClass(Class cls, bool headerIsBundle, bool headerIsPreoptimized)
{
// 获取类名
const char *mangledName = cls->nonlazyMangledName();
if (missingWeakSuperclass(cls)) { ... }
cls->fixupBackwardDeployingStableSwift();
Class replacing = nil;
if (mangledName != nullptr) { ... }
if (headerIsPreoptimized && !replacing) {...
} else {
if (mangledName) {
//some Swift generic classes can lazily generate their names
//将类名和地址关联起来
addNamedClass(cls, mangledName, replacing);
} else { ...}
//将关联的类插入到另一张哈希表中
addClassTableEntry(cls);
}
// for future reference: shared cache never contains MH_BUNDLEs
if (headerIsBundle) { ... }
return cls;
}
nonlazyMangledName获取类名rw的赋值和ro的获取并不在readClass里面,等下运行源码探究下addNamedClass将类名和地址关联绑定起来addClassTableEntry将关联的类插入到哈希表中,这张表中都是初始化过的类
探究下nonlazyMangledName怎么获取类名的
const char *nonlazyMangledName() const {
return bits.safe_ro()->getName();
}
- 进入
safe_ro,源码如下
const class_ro_t *safe_ro() const {
class_rw_t *maybe_rw = data();
if (maybe_rw->flags & RW_REALIZED) {
// maybe_rw is rw
// rw有值 直接从rw中的ro获取
return maybe_rw->ro();
} else
// maybe_rw is actually ro
// 直接从ro中获取,ro是macho中的数据
return (class_ro_t *)maybe_rw;、
}
}
探究下addNamedClass将类名和地址关联绑定起来
static void addNamedClass(Class cls, const char *name, Class replacing = nil)
{
runtimeLock.assertLocked();
Class old;
if ((old = getClassExceptSomeSwift(name)) && old != replacing) {
inform_duplicate(name, old, cls);
// getMaybeUnrealizedNonMetaClass uses name lookups.
// Classes not found by name lookup must be in the
// secondary meta->nonmeta table.
addNonMetaClass(cls);
} else {
//更新gdb_objc_realized_classes表,将key设置为 name value 设置为cls
NXMapInsert(gdb_objc_realized_classes, name, cls);
}
ASSERT(!(cls->data()->flags & RO_META));
// wrong: constructed classes are already realized when they get here
// ASSERT(!cls->isRealized());
}
更新gdb_objc_realized_classes哈希表,key是name,value是cls
探究下addClassTableEntry插入另一张表
static void
addClassTableEntry(Class cls, bool addMeta = true)
{
runtimeLock.assertLocked();
// This class is allowed to be a known class via the shared cache or via
// data segments, but it is not allowed to be in the dynamic
//table already.
// allocatedClasses
auto &set = objc::allocatedClasses.get();
ASSERT(set.find(cls) == set.end());
if (!isKnownClass(cls))
set.insert(cls);
if (addMeta)
//将元类插入哈希表中
addClassTableEntry(cls->ISA(), false);
}
allocatedClasses在_objc_init中runtime_init运行时环境初始化,里面主要是unattachedCategories和allocatedClasses两张表,此时插入allocatedClasses表中addMeta=true将元类添加allocatedClasses表中
rw的赋值和ro的获取并不在readClass里面