public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
RejectedExecutionHandler handler) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), handler);
}
corePoolSize:核心工作线程
maximumPoolSize:最大工作线程(减去corePoolSize剩下为非核心线程)
keepAliveTime:(非核心线程)当线程空闲时间达到keepAliveTime,该线程会退出
unit:时间单位
workQueue:阻塞队列
handler:拒绝策略
线程提交优先级
任务来时,首先由corePoolSize去执行任务。如果任务过多,多余的任务会放进阻塞队列里,此时非核心线程就会去阻塞队列里获取任务进行处理。如果非核心线程和核心线程都满了(即maximumPoolSize满了),就会采取handler拒绝策略。
核心工作线程->阻塞队列->非核心工作线程
线程执行优先级
核心线程->非核心线程->阻塞队列
拒绝策略
AbortPolicy:
ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。
DiscardPolicy:
ThreadPoolExecutor.DiscardPolicy:丢弃任务,但是不抛出异常。如果线程队列已满,则后续提交的任务都会被丢弃,且是静默丢弃。
DiscardOldestPolicy:
ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新提交被拒绝的任务。
CallerRunsPolicy:
ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务。(可能主线程会去执行)
阻塞队列
SynchronousQueue:
支持公平策略和非公平策略。
队列(公平策略):队尾匹配队头出队,先进先出,体现公平原则
栈(非公平策略):先进后出
LinkedBlockingQueue:
它如果不指定容量,默认为Integer.MAX_VALUE,也就是无界队列。所以为了避免队列过大造成机器负载或者内存爆满的情况出现,我们在使用的时候建议手动传一个队列的大小
execute方法
// 全局锁,并发操作必备
private final ReentrantLock mainLock = new ReentrantLock();
// 跟踪线程池的最大大小,只有在持有全局锁mainLock的前提下才能访问此集合
private int largestPoolSize;
// 工作线程集合,存放线程池中所有的(活跃的)工作线程,只有在持有全局锁mainLock的前提下才能访问此集合
private final HashSet<Worker> workers = new HashSet<>();
//获取线程池状态
private static int runStateOf(int c) { return c & ~CAPACITY; }
//判断线程池的状态是否为 Running
private static boolean isRunning(int c) {
return c < SHUTDOWN;
}
// 存放线程池的运行状态 (runState) 和线程池内有效线程的数量 (workerCount)
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static int workerCountOf(int c) {
return c & CAPACITY;
}
//任务队列
private final BlockingQueue<Runnable> workQueue;
public void execute(Runnable command) {
// 如果任务为null,则抛出异常。
if (command == null)
throw new NullPointerException();
// ctl 中保存的线程池当前的一些状态信息
int c = ctl.get();
// 下面会涉及到 3 步 操作
// 1.首先判断当前线程池中之行的任务数量是否小于 corePoolSize
// 如果小于的话,通过addWorker(command, true)新建一个线程,并将任务(command)添加到该线程中;然后,启动该线程从而执行任务。
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
// 2.如果当前之行的任务数量大于等于 corePoolSize 的时候就会走到这里
// 通过 isRunning 方法判断线程池状态,线程池处于 RUNNING 状态才会被并且队列可以加入任务,该任务才会被加入进去
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
// 再次获取线程池状态,如果线程池状态不是 RUNNING 状态就需要从任务队列中移除任务,并尝试判断线程是否全部执行完毕。同时执行拒绝策略。
if (!isRunning(recheck) && remove(command))
reject(command);
// 如果当前线程池为空就新创建一个线程并执行。
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
//3. 通过addWorker(command, false)新建一个线程,并将任务(command)添加到该线程中;然后,启动该线程从而执行任务。
//如果addWorker(command, false)执行失败,则通过reject()执行相应的拒绝策略的内容。
else if (!addWorker(command, false))
reject(command);
}
/**
* 添加新的工作线程到线程池
* @param firstTask 要执行
* @param core参数为true的话表示使用线程池的基本大小,为false使用线程池最大大小
* @return 添加成功就返回true否则返回false
*/
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
//这两句用来获取线程池的状态
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
//获取线程池中线程的数量
int wc = workerCountOf(c);
// core参数为true的话表明队列也满了,线程池大小变为 maximumPoolSize
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
//原子操作将workcount的数量加1
if (compareAndIncrementWorkerCount(c))
break retry;
// 如果线程的状态改变了就再次执行上述操作
c = ctl.get();
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
// 标记工作线程是否启动成功
boolean workerStarted = false;
// 标记工作线程是否创建成功
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
// 加锁
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
//获取线程池状态
int rs = runStateOf(ctl.get());
//rs < SHUTDOWN 如果线程池状态依然为RUNNING,并且线程的状态是存活的话,就会将工作线程添加到工作线程集合中
//(rs=SHUTDOWN && firstTask == null)如果线程池状态小于STOP,也就是RUNNING或者SHUTDOWN状态下,同时传入的任务实例firstTask为null,则需要添加到工作线程集合和启动新的Worker
// firstTask == null证明只新建线程而不执行任务
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
//更新当前工作线程的最大容量
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
// 工作线程是否启动成功
workerAdded = true;
}
} finally {
// 释放锁
mainLock.unlock();
}
//// 如果成功添加工作线程,则调用Worker内部的线程实例t的Thread#start()方法启动真实的线程实例
if (workerAdded) {
t.start();
/// 标记线程启动成功
workerStarted = true;
}
}
} finally {
// 线程启动失败,需要从工作线程中移除对应的Worker
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
Runnable自 Java 1.0 以来一直存在,但Callable仅在 Java 1.5 中引入,目的就是为了来处理Runnable不支持的用例。Runnable接口不会返回结果或抛出检查异常,但是 **Callable接口**可以。所以,如果任务不需要返回结果或抛出异常推荐使用Runnable接口,这样代码看起来会更加简洁。execute()方法用于提交不需要返回值的任务,所以无法判断任务是否被线程池执行成功与否;submit()方法用于提交需要返回值的任务。线程池会返回一个Future类型的对象,通过这个Future对象可以判断任务是否执行成功** ,并且可以通过Future的get()方法来获取返回值,get()方法会阻塞当前线程直到任务完成,而使用get(long timeout,TimeUnit unit)方法则会阻塞当前线程一段时间后立即返回,这时候有可能任务没有执行完。shutdown():关闭线程池,线程池的状态变为SHUTDOWN。线程池不再接受新任务了,但是队列里的任务得执行完毕。shutdownNow():关闭线程池,线程的状态变为STOP。线程池会终止当前正在运行的任务,并停止处理排队的任务并返回正在等待执行的 List。isShutDown当调用shutdown()方法后返回为 true。isTerminated当调用shutdown()方法后,并且所有提交的任务完成后返回为 true
FixedThreadPool
/**
* 创建一个可重用固定数量线程的线程池
*/
public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>(),
threadFactory);
}
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
- 如果当前运行的线程数小于 corePoolSize, 如果再来新任务的话,就创建新的线程来执行任务;
- 当前运行的线程数等于 corePoolSize 后, 如果再来新任务的话,会将任务加入
LinkedBlockingQueue; - 线程池中的线程执行完 手头的任务后,会在循环中反复从
LinkedBlockingQueue中获取任务来执行;
FixedThreadPool 使用无界队列 LinkedBlockingQueue(队列的容量为 Integer.MAX_VALUE)作为线程池的工作队列会对线程池带来如下影响 :
- 当线程池中的线程数达到
corePoolSize后,新任务将在无界队列中等待,因此线程池中的线程数不会超过 corePoolSize; - 由于使用无界队列时
maximumPoolSize将是一个无效参数,因为不可能存在任务队列满的情况。所以,通过创建FixedThreadPool的源码可以看出创建的FixedThreadPool的corePoolSize和maximumPoolSize被设置为同一个值。 - 由于 1 和 2,使用无界队列时
keepAliveTime将是一个无效参数; - 运行中的
FixedThreadPool(未执行shutdown()或shutdownNow())不会拒绝任务,在任务比较多的时候会导致 OOM(内存溢出)。
SingleThreadExecutor
/**
*返回只有一个线程的线程池
*/
public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>(),
threadFactory));
}
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
- 如果当前运行的线程数少于 corePoolSize,则创建一个新的线程执行任务;
- 当前线程池中有一个运行的线程后,将任务加入
LinkedBlockingQueue - 线程执行完当前的任务后,会在循环中反复从
LinkedBlockingQueue中获取任务来执行;
SingleThreadExecutor 使用无界队列 LinkedBlockingQueue 作为线程池的工作队列(队列的容量为 Intger.MAX_VALUE)。SingleThreadExecutor 使用无界队列作为线程池的工作队列会对线程池带来的影响与 FixedThreadPool 相同。说简单点就是可能会导致 OOM.
CachedThreadPool
/**
* 创建一个线程池,根据需要创建新线程,但会在先前构建的线程可用时重用它。
*/
public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(),
threadFactory);
}
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
CachedThreadPool 的corePoolSize 被设置为空(0),maximumPoolSize被设置为 Integer.MAX.VALUE,即它是无界的,这也就意味着如果主线程提交任务的速度高于 maximumPool 中线程处理任务的速度时,CachedThreadPool 会不断创建新的线程。极端情况下,这样会导致耗尽 cpu 和内存资源。
- 首先执行
SynchronousQueue.offer(Runnable task)提交任务到任务队列。如果当前maximumPool中有闲线程正在执行SynchronousQueue.poll(keepAliveTime,TimeUnit.NANOSECONDS),那么主线程执行 offer 操作与空闲线程执行的poll操作配对成功,主线程把任务交给空闲线程执行,execute()方法执行完成,否则执行下面的步骤 2; - 当初始
maximumPool为空,或者maximumPool中没有空闲线程时,将没有线程执行SynchronousQueue.poll(keepAliveTime,TimeUnit.NANOSECONDS)。这种情况下,步骤 1 将失败,此时CachedThreadPool会创建新线程执行任务,execute 方法执行完成;
CachedThreadPool允许创建的线程数量为 Integer.MAX_VALUE ,可能会创建大量线程,从而导致 OOM。