JDK存储一组Object的集合框架是Collection。而针对Collection框架的一组操作集合体是Collections,里面包含了多种针对Collection的操作,例如:排序、查找、交换、反转、复制等。
这一篇讲述Collections的排序操作。
public static <T extends Comparable<? super T>> void sort(List<T> list) {
list.sort(null);
}
我们可以发现Collections.sort()调用的其实是List接口里的默认方法sort(),代码如下:
@SuppressWarnings({"unchecked", "rawtypes"})
default void sort(Comparator<? super E> c) {
Object[] a = this.toArray();
Arrays.sort(a, (Comparator) c);
ListIterator<E> i = this.listIterator();
for (Object e : a) {
i.next();
i.set((E) e);
}
}
在List.sort()方法中调用Arrays.sort();方法,传入数组a和比较器c,接下来我们看看Arrays类中的sort方法,代码如下:
public static <T> void sort(T[] a, Comparator<? super T> c) {
if (c == null) {
sort(a);
} else {
if (LegacyMergeSort.userRequested)
legacyMergeSort(a, c);
else
TimSort.sort(a, 0, a.length, c, null, 0, 0);
}
}
从上面代码可以看出,如果有自定义Comparator则调用TimSort.sort(),没有自定义Comparator则调用ComparableTimSort.sort(),其实这两个方法的实现逻辑是一样的,只是java.util.TimSort.sort可以使用自定义的Comparator,而java.util.ComparableTimSort.sort不使用Comparator而已。
ComparableTimSort.sort
static void sort(Object[] a, int lo, int hi, Object[] work, int workBase, int workLen) {
assert a != null && lo >= 0 && lo <= hi && hi <= a.length;
int nRemaining = hi - lo;
if (nRemaining < 2)
return;
// 数组长度小于32
if (nRemaining < MIN_MERGE) {
// 找出最大的递增或者递减的个数,如果递减,则此段数组严格反一下方向
int initRunLen = countRunAndMakeAscending(a, lo, hi);
binarySort(a, lo, hi, lo + initRunLen);
return;
}
// 数组长度大于等于32
````````
/**
* 从左到右在阵列上行进一次,寻找自然路线,
* 将短的自然运行扩展到MIN元素,并合并运行
* 保持堆栈不变。
*/
ComparableTimSort ts = new ComparableTimSort(a, work, workBase, workLen);
int minRun = minRunLength(nRemaining);
do {
// Identify next run
int runLen = countRunAndMakeAscending(a, lo, hi);
// If run is short, extend to min(minRun, nRemaining)
if (runLen < minRun) {
int force = nRemaining <= minRun ? nRemaining : minRun;
binarySort(a, lo, lo + force, lo + runLen);
runLen = force;
}
// Push run onto pending-run stack, and maybe merge
ts.pushRun(lo, runLen);
ts.mergeCollapse();
// Advance to find next run
lo += runLen;
nRemaining -= runLen;
} while (nRemaining != 0);
// Merge all remaining runs to complete sort
assert lo == hi;
ts.mergeForceCollapse();
assert ts.stackSize == 1;
}
主要步骤:
数组长度小于32时
@SuppressWarnings({"fallthrough", "rawtypes", "unchecked"})
private static void binarySort(Object[] a, int lo, int hi, int start) {
// 索引小于start的元素均已排好序
assert lo <= start && start <= hi;
if (start == lo)
start++;
for ( ; start < hi; start++) {
Comparable pivot = (Comparable) a[start];
// Set left (and right) to the index where a[start] (pivot) belongs
int left = lo;
int right = start;
assert left <= right;
// 二分查找
while (left < right) {
int mid = (left + right) >>> 1;
if (pivot.compareTo(a[mid]) < 0)
right = mid;
else
left = mid + 1;
}
assert left == right;
/*
* The invariants still hold: pivot >= all in [lo, left) and
* pivot < all in [left, start), so pivot belongs at left. Note
* that if there are elements equal to pivot, left points to the
* first slot after them -- that's why this sort is stable.
* Slide elements over to make room for pivot.
*/
int n = start - left; // 需要移动的元素个数
// 空出插入pivot的位置
switch (n) {
case 2: a[left + 2] = a[left + 1];
case 1: a[left + 1] = a[left];
break;
default: System.arraycopy(a, left, a, left + 1, n);
}
a[left] = pivot;
}
}
数组长度大于等于32时
static void sort(Object[] a, int lo, int hi, Object[] work, int workBase, int workLen) {
//数组个数小于32的时候
......
// 数组个数大于32的时候
/**
* March over the array once, left to right, finding natural runs,
* extending short natural runs to minRun elements, and merging runs
* to maintain stack invariant.
*/
ComparableTimSort ts = new ComparableTimSort(a, work, workBase, workLen);
// 计算run的长度
int minRun = minRunLength(nRemaining);
do {
// Identify next run
// 找出连续升序的最大个数
int runLen = countRunAndMakeAscending(a, lo, hi);
// If run is short, extend to min(minRun, nRemaining)
// 如果run长度小于规定的minRun长度,先进行二分插入排序
if (runLen < minRun) {
int force = nRemaining <= minRun ? nRemaining : minRun;
binarySort(a, lo, lo + force, lo + runLen);
runLen = force;
}
// Push run onto pending-run stack, and maybe merge
ts.pushRun(lo, runLen);
// 进行归并
ts.mergeCollapse();
// Advance to find next run
lo += runLen;
nRemaining -= runLen;
} while (nRemaining != 0);
// Merge all remaining runs to complete sort
assert lo == hi;
// 归并所有的run
ts.mergeForceCollapse();
assert ts.stackSize == 1;
}
-
计算出run的最小的长度minRun
a) 如果数组大小为2的N次幂,则返回16(MIN_MERGE / 2);
b) 其他情况下,逐位向右位移(即除以2),直到找到介于16和32间的一个数;
/**
* Returns the minimum acceptable run length for an array of the specified
* length. Natural runs shorter than this will be extended with
* {@link #binarySort}.
*
* Roughly speaking, the computation is:
*
* If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
* Else if n is an exact power of 2, return MIN_MERGE/2.
* Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
* is close to, but strictly less than, an exact power of 2.
*
* For the rationale, see listsort.txt.
*
* @param n the length of the array to be sorted
* @return the length of the minimum run to be merged
*/
private static int minRunLength(int n) {
assert n >= 0;
int r = 0; // Becomes 1 if any 1 bits are shifted off
while (n >= MIN_MERGE) {
r |= (n & 1);
n >>= 1;
}
return n + r;
}
- 求最小递增的长度,如果长度小于minRun,使用插入排序补充到minRun的个数,操作和小于32的个数是一样。
- 用stack记录每个run的长度,当下面的条件其中一个成立时归并,直到数量不变:
runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
runLen[i - 2] > runLen[i - 1]
/**
* Examines the stack of runs waiting to be merged and merges adjacent runs
* until the stack invariants are reestablished:
*
* 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
* 2. runLen[i - 2] > runLen[i - 1]
*
* This method is called each time a new run is pushed onto the stack,
* so the invariants are guaranteed to hold for i < stackSize upon
* entry to the method.
*/
private void mergeCollapse() {
while (stackSize > 1) {
int n = stackSize - 2;
if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1]) {
if (runLen[n - 1] < runLen[n + 1])
n--;
mergeAt(n);
} else if (runLen[n] <= runLen[n + 1]) {
mergeAt(n);
} else {
break; // Invariant is established
}
}
}
关于归并方法和对一般的归并排序做出了简单的优化。假设两个 run 是 run1,run2 ,先用 gallopRight在 run1 里使用 binarySearch 查找run2 首元素 的位置k,那么 run1 中 k 前面的元素就是合并后最小的那些元素。然后,在run2 中查找run1 尾元素 的位置 len2,那么run2 中 len2 后面的那些元素就是合并后最大的那些元素。最后,根据len1 与len2 大小,调用mergeLo 或者 mergeHi 将剩余元素合并。
/**
* Merges the two runs at stack indices i and i+1. Run i must be
* the penultimate or antepenultimate run on the stack. In other words,
* i must be equal to stackSize-2 or stackSize-3.
*
* @param i stack index of the first of the two runs to merge
*/
@SuppressWarnings("unchecked")
private void mergeAt(int i) {
assert stackSize >= 2;
assert i >= 0;
assert i == stackSize - 2 || i == stackSize - 3;
int base1 = runBase[i];
int len1 = runLen[i];
int base2 = runBase[i + 1];
int len2 = runLen[i + 1];
assert len1 > 0 && len2 > 0;
assert base1 + len1 == base2;
/*
* Record the length of the combined runs; if i is the 3rd-last
* run now, also slide over the last run (which isn't involved
* in this merge). The current run (i+1) goes away in any case.
*/
runLen[i] = len1 + len2;
if (i == stackSize - 3) {
runBase[i + 1] = runBase[i + 2];
runLen[i + 1] = runLen[i + 2];
}
stackSize--;
/*
* Find where the first element of run2 goes in run1. Prior elements
* in run1 can be ignored (because they're already in place).
*/
int k = gallopRight((Comparable<Object>) a[base2], a, base1, len1, 0);
assert k >= 0;
base1 += k;
len1 -= k;
if (len1 == 0)
return;
/*
* Find where the last element of run1 goes in run2. Subsequent elements
* in run2 can be ignored (because they're already in place).
*/
len2 = gallopLeft((Comparable<Object>) a[base1 + len1 - 1], a,
base2, len2, len2 - 1);
assert len2 >= 0;
if (len2 == 0)
return;
// Merge remaining runs, using tmp array with min(len1, len2) elements
if (len1 <= len2)
mergeLo(base1, len1, base2, len2);
else
mergeHi(base1, len1, base2, len2);
}
- 最后归并还有没有归并的run,知道run的数量为1。
例子
为了演示方便,我将TimSort中的minRun直接设置为2,否则我不能用很小的数组演示。同时把MIN_MERGE也改成2(默认为32),这样避免直接进入二分插入排序。
1. 初始数组为[7,5,1,2,6,8,10,12,4,3,9,11,13,15,16,14]
2. 寻找第一个连续的降序或升序序列:[1,5,7] [2,6,8,10,12,4,3,9,11,13,15,16,14]
3. stackSize=1,所以不合并,继续找第二个run
4. 找到一个递减序列,调整次序:[1,5,7] [2,6,8,10,12] [4,3,9,11,13,15,16,14]
5. 因为runLen[0] <= runLen[1]所以归并
1) gallopRight:寻找run1的第一个元素应当插入run0中哪个位置(”2”应当插入”1”之后),然后就可以忽略之前run0的元素(都比run1的第一个元素小)
2) gallopLeft:寻找run0的最后一个元素应当插入run1中哪个位置(”7”应当插入”8”之前),然后就可以忽略之后run1的元素(都比run0的最后一个元素大)
这样需要排序的元素就仅剩下[5,7] [2,6],然后进行mergeLow 完成之后的结果: [1,2,5,6,7,8,10,12] [4,3,9,11,13,15,16,14]
6. 寻找连续的降序或升序序列[1,2,5,6,7,8,10,12] [3,4] [9,11,13,15,16,14]
7. 不进行归并排序,因为runLen[0] > runLen[1]
8. 寻找连续的降序或升序序列:[1,2,5,6,7,8,10,12] [3,4] [9,11,13,15,16] [14]
9. 因为runLen[1] <= runLen[2],所以需要归并
-
使用gallopRight,发现为正常顺序。得[1,2,5,6,7,8,10,12] [3,4,9,11,13,15,16] [14]
-
最后只剩下[14]这个元素:[1,2,5,6,7,8,10,12] [3,4,9,11,13,15,16] [14]
-
因为runLen[0] <= runLen[1] + runLen[2]所以合并。因为runLen[0] > runLen[2],所以将run1和run2先合并。(否则将run0和run1先合并)
完成之后的结果: [1,2,5,6,7,8,10,12] [3,4,9,11,13,14,15,16] -
完成之后的结果:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]