【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(3):行列式的性质

570 阅读3分钟

前言

Hello!小伙伴!

非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~  

自我介绍 ଘ(੭ˊᵕˋ)੭

昵称:海轰

标签:程序猿|C++选手|学生

简介:因C语言结识编程,随后转入计算机专业,有幸拿过一些国奖、省奖...已保研。目前正在学习C++/Linux/Python

学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!

 

机器学习小白阶段

文章仅作为自己的学习笔记 用于知识体系建立以及复习

知其然 知其所以然!

温馨提示

因编译器兼容性

部分latex语法数学公式显示不正确或错误

建议查看原文:【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(3):行列式的性质

1.5 行列式的性质

转置行列式

n阶行列式D: ​ ​D=a11a12...a1na21a22...a2n......an1an2...annD=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ a_{21} & a_{22} & ... &a_{2n}\\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix}

aij=ajia_{ij}=a_{ji},得到DT=a11a21...an1a12a22...an2......a1na2n...annD^T=\begin{vmatrix} a_{11} & a_{21} &... & a_{n1}\\ a_{12} & a_{22} & ... &a_{n2}\\ . & . & & . \\ . & . & & . \\ a_{1n} & a_{2n} &... & a_{nn}\\ \end{vmatrix}

行列式DTD^T称为行列式DD的转置行列式

性质1

内容

行列式与它的转置行列式相等

证明

D=a11a12...a1na21a22...a2n......an1an2...annD=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ a_{21} & a_{22} & ... &a_{2n}\\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix}DTD^TDD的转置行列式

再设DT=b11b12...b1nb21b22...b2n......bn1bn2...bnnD^T=\begin{vmatrix} b_{11} & b_{12} &... & b_{1n}\\ b_{21} & b_{22} & ... &b_{2n}\\ . & . & & . \\ . & . & & . \\ b_{n1} & b_{n2} &... & b_{nn}\\ \end{vmatrix}

又因为 我们知道DT=a11a21...an1a12a22...an2......a1na2n...annD^T=\begin{vmatrix} a_{11} & a_{21} &... & a_{n1}\\ a_{12} & a_{22} & ... &a_{n2}\\ . & . & & . \\ . & . & & . \\ a_{1n} & a_{2n} &... & a_{nn}\\ \end{vmatrix}

所以有:bij=ajib_{ij}=a_{ji}

推出 DT=b11b12...b1nb21b22...b2n......bn1bn2...bnnD^T=\begin{vmatrix} b_{11} & b_{12} &... & b_{1n}\\ b_{21} & b_{22} & ... &b_{2n}\\ . & . & & . \\ . & . & & . \\ b_{n1} & b_{n2} &... & b_{nn}\\ \end{vmatrix}=(1)tb1p1b2p2...bnpn\sum(-1)^tb_{1p_1}b_{2p_2}...b_{np_n}=(1)tap11ap22...apnn\sum(-1)^ta_{p_11}a_{p_22}...a_{p_nn}(利用bij=ajib_{ij}=a_{ji})

又因为

(1)ta1p1a2p2...anpn=(1)tap11ap22...apnn\sum(-1)^ta_{1p_1}a_{2p_2}...a_{np_n}=\sum(-1)^ta_{p_11}a_{p_22}...a_{p_nn}

所以

证明完成!

性质2

内容

互换行列式的两行(列),行列式变号

证明

设n阶行列式DD=a11a12...a1na21a22...a2n......an1an2...annD=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ a_{21} & a_{22} & ... &a_{2n}\\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix}

交换第i、j行

D1D_1

我们设

D1=b11b12...b1nb21b22...b2n......bn1bn2...bnnD_1=\begin{vmatrix} b_{11} & b_{12} &... & b_{1n}\\ b_{21} & b_{22} & ... &b_{2n}\\ . & . & & . \\ . & . & & . \\ b_{n1} & b_{n2} &... & b_{nn}\\ \end{vmatrix}

ki,jk\neq i,j时,有bkp=akpb_{kp}=a_{kp}k=i,jk=i,j时,有bip=ajpb_{ip}=a_{jp}bjp=aipb_{jp}=a_{ip}

简单的说

  • ki,jk\neq i,j,也就是不属于交换的那两行,b与a就是完全的对应关系;
  • k=i,jk=i,j时,就是交换的那两行,b与a行之间的就是相反的,列是一样的

D1=b11b12...b1nb21b22...b2n......bn1bn2...bnn=(1)tb1p1...bipi...bjpj...bnpn=(1)ta1p1...ajpi...aipj...anpnD_1=\begin{vmatrix} b_{11} & b_{12} &... & b_{1n}\\ b_{21} & b_{22} & ... &b_{2n}\\ . & . & & . \\ . & . & & . \\ b_{n1} & b_{n2} &... & b_{nn}\\ \end{vmatrix}=\sum(-1)^tb_{1p_1}...b_{ip_i}...b_{jp_j}...b_{np_n}=\sum(-1)^ta_{1p_1}...a_{jp_i}...a_{ip_j}...a_{np_n}

D=(1)ta1p1...aipi...ajpj...anpnD=\sum(-1)^ta_{1p_1}...a_{ip_i}...a_{jp_j}...a_{np_n}

对比 发现只交换了行坐标

从1...i...j...n 变成了 1...j...i...n

很明显,和全排列中交换任意两个元素一样,奇偶性会改变 也就是逆序数+1或-1

其实就是在行列式这里就是相当于奇偶性发生一次变化,就是乘了一个-1

所以

D1=DD_1=-D

证明完成!

性质3

内容

行列式中的某一行(列)中的所有元素都乘以同一数k,等于用数k乘此行列式

证明

设行列式D=a11a12...a1na21a22...a2n......an1an2...annD=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ a_{21} & a_{22} & ... &a_{2n}\\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix}

假设第i行所有元素同时乘以k,有

D1=a11a12...a1na21a22...a2n...ai1kai2k.aink...an1an2...annD_1=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ a_{21} & a_{22} & ... &a_{2n}\\ . & . & & . \\ a_{i1}*k & a_{i2}*k& . & a_{in}*k\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix}

化简

D1=a11a12...a1na21a22...a2n...ai1kai2k.aink...an1an2...ann=(1)ta1p1a2p2...kaipi...anpn=k(1)ta1p1a2p2...aipi...anpnD_1=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ a_{21} & a_{22} & ... &a_{2n}\\ . & . & & . \\ a_{i1}*k & a_{i2}*k& . & a_{in}*k\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix}=\sum(-1)^ta_{1p_1}a_{2p_2}...k*a_{ip_i}...a_{np_n}=k*\sum(-1)^ta_{1p_1}a_{2p_2}...a_{ip_i}...a_{np_n}

证明完成!

同理,列的情形也是一样的

性质4

内容

行列式中如果有两行(列)元素成比列,则此行列式等于0

证明

设行列式D=a11a12...a1n...ai1ai2...ain...aj1aj2...ajn...an1an2...annD=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ a_{i1} & a_{i2} & ... &a_{in}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix}

其中第i行元素与第j行元素成比例,也就是ajp=kajpa_{jp}=k*a_{jp}

D=a11a12...a1n...ai1ai2...ain...aj1aj2...ajn...an1an2...ann=(1)ta1p1...aipi...ajpj...anpnD=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ a_{i1} & a_{i2} & ... &a_{in}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} =\sum(-1)^ta_{1p_1}...a_{ip_i}...a_{jp_j}...a_{np_n}

因为ajp=kajpa_{jp}=k*a_{jp}

所以

(1)ta1p1...aipi...ajpj...anpn=(1)ta1p1...aipi...kaipi...anpn=k(1)ta1p1...aipi...aipi...anpn=D\sum(-1)^ta_{1p_1}...a_{ip_i}...a_{jp_j}...a_{np_n}=\sum(-1)^ta_{1p_1}...a_{ip_i}...k*a_{ip_i}...a_{np_n}=k*\sum(-1)^ta_{1p_1}...a_{ip_i}...a_{ip_i}...a_{np_n}=D

如果此时对换第i行与第j行

行列式DD依然不会发生变化

因为对换后,D还是原来的值

k(1)ta1p1...aipi...aipi...anpn=Dk*\sum(-1)^ta_{1p_1}...a_{ip_i}...a_{ip_i}...a_{np_n}=D(对换后 其实和原来一样)

但是因为任意两行互换后,一定会发生变号,变为-D

综上,有

D=DD=-D

得到

D=0D=0

证明完成!

性质5

内容

若行列式中的某一行(列)的元素都是两数之和,例如第i列的元素都是两数之和

D=a11a12...(a1i+b1i)...a1na21a22...(a2i+b2i)...a2n.........an1an2...(ani+bni)...annD=\begin{vmatrix} a_{11} & a_{12} &...&(a_{1i}+b_{1i})&... & a_{1n}\\ a_{21} & a_{22} & ... &(a_{2i}+b_{2i})&...&a_{2n}\\ . & . & & . \\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... &(a_{ni}+b_{ni})&...& a_{nn}\\ \end{vmatrix} ​ 则

D=a11a12...a1i...a1na21a22...a2i...a2n.........an1an2...ani...ann+a11a12...b1i...a1na21a22...b2i...a2n.........an1an2...bni...annD=\begin{vmatrix} a_{11} & a_{12} &...&a_{1i}&... & a_{1n}\\ a_{21} & a_{22} & ... &a_{2i}&...&a_{2n}\\ . & . & & . \\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... &a_{ni}&...& a_{nn}\\ \end{vmatrix} +\begin{vmatrix} a_{11} & a_{12} &...&b_{1i}&... & a_{1n}\\ a_{21} & a_{22} & ... &b_{2i}&...&a_{2n}\\ . & . & & . \\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... &b_{ni}&...& a_{nn}\\ \end{vmatrix}

证明

D=a11a12...(a1i+b1i)...a1na21a22...(a2i+b2i)...a2n.........an1an2...(ani+bni)...ann=(1)ta1p1...(aipi+bipi)...anpn=(1)t(a1p1...aipi...anpn+a1p1...bipi...anpn)=(1)ta1p1...aipi...anpn+(1)ta1p1...bipi...anpn=a11a12...a1i...a1na21a22...a2i...a2n.........an1an2...ani...ann+a11a12...b1i...a1na21a22...b2i...a2n.........an1an2...bni...annD=\begin{vmatrix} a_{11} & a_{12} &...&(a_{1i}+b_{1i})&... & a_{1n}\\ a_{21} & a_{22} & ... &(a_{2i}+b_{2i})&...&a_{2n}\\ . & . & & . \\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... &(a_{ni}+b_{ni})&...& a_{nn}\\ \end{vmatrix} =\sum(-1)^ta_{1p_1}...(a_{ip_i}+b_{ip_i})...a_{np_n} \\=\sum(-1)^t(a_{1p_1}...a_{ip_i}...a_{np_n}+a_{1p_1}...b_{ip_i}...a_{np_n})\\=\sum(-1)^ta_{1p_1}...a_{ip_i}...a_{np_n}+\sum(-1)^ta_{1p_1}...b_{ip_i}...a_{np_n}\\=\begin{vmatrix} a_{11} & a_{12} &...&a_{1i}&... & a_{1n}\\ a_{21} & a_{22} & ... &a_{2i}&...&a_{2n}\\ . & . & & . \\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... &a_{ni}&...& a_{nn}\\ \end{vmatrix} +\begin{vmatrix} a_{11} & a_{12} &...&b_{1i}&... & a_{1n}\\ a_{21} & a_{22} & ... &b_{2i}&...&a_{2n}\\ . & . & & . \\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... &b_{ni}&...& a_{nn}\\ \end{vmatrix}

证明完成!

性质6

内容

把行列式的某一行(列)的各元素乘以同一个数然后再加到另一行(列)对应的元素上去,行列式不变

证明

设行列式D=a11a12...a1n...ai1ai2...ain...aj1aj2...ajn...an1an2...annD=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ a_{i1} & a_{i2} & ... &a_{in}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix}

对第j行乘以k,再加到第i行,得到

D1=a11a12...a1n...ai1+kaj1ai2+kaj2...ain+kajn...aj1aj2...ajn...an1an2...annD_1=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ a_{i1}+k*a_{j1} & a_{i2}+k*a_{j2} & ... &a_{in}+k*a_{jn}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix}

由性质5得

D1=a11a12...a1n...ai1+kaj1ai2+kaj2...ain+kajn...aj1aj2...ajn...an1an2...ann=a11a12...a1n...ai1ai2...ain...aj1aj2...ajn...an1an2...ann+a11a12...a1n...kaj1kaj2...kajn...aj1aj2...ajn...an1an2...annD_1=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ a_{i1}+k*a_{j1} & a_{i2}+k*a_{j2} & ... &a_{in}+k*a_{jn}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} =\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ a_{i1} & a_{i2} & ... &a_{in}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} +\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ k*a_{j1} & k*a_{j2} & ... &k*a_{jn}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix}

由性质4得

a11a12...a1n...kaj1kaj2...kajn...aj1aj2...ajn...an1an2...ann=0\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ k*a_{j1} & k*a_{j2} & ... &k*a_{jn}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} =0

所以D1=a11a12...a1n...ai1+kaj1ai2+kaj2...ain+kajn...aj1aj2...ajn...an1an2...ann=a11a12...a1n...ai1ai2...ain...aj1aj2...ajn...an1an2...ann=DD_1=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ a_{i1}+k*a_{j1} & a_{i2}+k*a_{j2} & ... &a_{in}+k*a_{jn}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} =\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ a_{i1} & a_{i2} & ... &a_{in}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix}=D

证明完成!

结语

说明:

  • 参考于 课本《线性代数》第五版 同济大学数学系编
  • 配合书中概念讲解 结合了自己的一些理解及思考

文章仅作为学习笔记,记录从0到1的一个过程

希望对您有所帮助,如有错误欢迎小伙伴指正~

我是 海轰ଘ(੭ˊᵕˋ)੭

如果您觉得写得可以的话,请点个赞吧

谢谢支持 ❤️

在这里插入图片描述