Discuss:www.cnblogs.com/grandyang/p…
Write a program to solve a Sudoku puzzle by filling the empty cells.
A sudoku solution must satisfy all of the following rules:
- Each of the digits
1-9
must occur exactly once in each row. - Each of the digits
1-9
must occur exactly once in each column. - Each of the digits
1-9
must occur exactly once in each of the 93x3
sub-boxes of the grid.
The '.'
character indicates empty cells.
Example 1:
Input: board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]
Output: [["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]]
Explanation: The input board is shown above and the only valid solution is shown below:
Constraints:
board.length == 9
board[i].length == 9
board[i][j]
is a digit or'.'
.- It is guaranteed that the input board has only one solution.
解法一
这道求解数独的题是在之前那道 LeetCode 36. Valid Sudoku 验证数独 的基础上的延伸,之前那道题让我们验证给定的数组是否为数独数组,这道让求解数独数组。对于每个需要填数字的格子带入1到9,每代入一个数字都判定其是否合法,如果合法就继续下一次递归,结束时把数字设回 '.',判断新加入的数字是否合法时,只需要判定当前数字是否合法,不需要判定这个数组是否为数独数组,因为之前加进的数字都是合法的,这样可以使程序更加高效一些,整体思路是这样的,但是实现起来可以有不同的形式。一种实现形式是递归带上横纵坐标,由于是一行一行的填数字,且是从0行开始的,所以当 i 到达 9 的时候,说明所有的数字都成功的填入了,直接返回 ture。当 j 大于等于 9 时,当前行填完了,需要换到下一行继续填,则继续调用递归函数,横坐标带入 i+1。否则看若当前数字不为点,说明当前位置不需要填数字,则对右边的位置调用递归。若当前位置需要填数字,则应该尝试填入1到9内的所有数字,让 c 从 1 遍历到 9,每当试着填入一个数字,都需要检验是否有冲突,使用另一个子函数 isValid 来检验是否合法,假如不合法,则跳过当前数字。若合法,则将当前位置赋值为这个数字,并对右边位置调用递归,若递归函数返回 true,则说明可以成功填充,直接返回 true。不行的话,需要重置状态,将当前位置恢复为点。若所有数字都尝试了,还是不行,则最终返回 false。参见代码如下:
class Solution {
fun solveSudoku(board: Array<CharArray>): Unit {
if (board.isEmpty()) {
return
}
solve(board)
}
private fun solve(
board: Array<CharArray>
): Boolean {
for (i in board.indices) {
for (j in board[0].indices) {
if (board[i][j] == '.') {
for (c in '1'..'9') {
if (isValid(board, i, j, c)) {
board[i][j] = c
if (solve(board)) {
return true
} else {
board[i][j] = '.'
}
}
}
return false
}
}
}
return true
}
private fun isValid(board: Array<CharArray>, row: Int, col: Int, c: Char): Boolean {
for (index in board.indices) {
if (board[index][col] != '.' && board[index][col] == c) {
return false
}
if (board[row][index] != '.' && board[row][index] == c) {
return false
}
if (board[3 * (row / 3) + index / 3][3 * (col / 3) + index % 3] != '.' &&
board[3 * (row / 3) + index / 3][3 * (col / 3) + index % 3] == c
) {
return false
}
}
return true
}
}