socket

726 阅读8分钟

基础知识

先明确一个概念:每个TCP socket在内核中都有一个发送缓冲区(SO_SNDBUF )和一个接收缓冲区(SO_RCVBUF),TCP的全双工的工作模式以及TCP的滑动窗口便是依赖于这两个独立的buffer以及此buffer的填充状态。SO_SNDBUF和SO_RCVBUF 在windows操作系统中默认情况下都是8K

SO_SNDBUF

进程发送的数据的时候(假设调用了一个send方法),最简单情况(也是一般情况),将数据拷贝进入socket的内核发送缓冲区之中,然后send便会在上层返回。换句话说,send返回之时,数据不一定会发送到对端去(和write写文件有点类似),send仅仅是把应用层buffer的数据拷贝进socket的内核发送buffer中。

SO_RCVBUF

把接受到的数据缓存入内核,应用进程一直没有调用read进行读取的话,此数据会一直缓存在相应socket的接收缓冲区内。再啰嗦一点,不管进程是否读取socket,对端发来的数据都会经由内核接收并且缓存到socket的内核接收缓冲区之中。read所做的工作,就是把内核缓冲区中的数据拷贝到应用层用户的buffer里面,仅此而已。

滑动窗口

TCP链接在三次握手的时候,会将自己的窗口大小(window size)发送给对方,其实就是SO_RCVBUF指定的值。之后在发送数据的时,发送方必须要先确认接收方的窗口没有被填充满,如果没有填满,则可以发送。

每次发送数据后,发送方将自己维护的对方的window size减小,表示对方的SO_RCVBUF可用空间变小。

当接收方处理开始处理SO_RCVBUF 中的数据时,会将数据从socket 在内核中的接受缓冲区读出,此时接收方的SO_RCVBUF可用空间变大,即window size变大,接受方会以ack消息的方式将自己最新的window size返回给发送方,此时发送方将自己的维护的接受的方的window size设置为ack消息返回的window size。

此外,发送方可以连续的给接受方发送消息,只要保证对方的SO_RCVBUF空间可以缓存数据即可,即window size>0。当接收方的SO_RCVBUF被填充满时,此时window size=0,发送方不能再继续发送数据,要等待接收方ack消息,以获得最新可用的window size。

现在来看一下SO_RCVBUF和滑动窗口是如何造成粘包、拆包的?

粘包:假设发送方的每256 bytes表示一个完整的报文,接收方由于数据处理不及时,这256个字节的数据都会被缓存到SO_RCVBUF中。如果接收方的SO_RCVBUF中缓存了多个报文,那么对于接收方而言,这就是粘包。

拆包:考虑另外一种情况,假设接收方的window size只剩了128,意味着发送方最多还可以发送128字节,而由于发送方的数据大小是256字节,因此只能发送前128字节,等到接收方ack后,才能发送剩余字节。这就造成了拆包。

MSS和MTU分片

MSS: 是Maximum Segement Size缩写,表示TCP报文中data部分的最大长度,是TCP协议在OSI五层网络模型中传输层对一次可以发送的最大数据的限制。

MTU: 最大传输单元是Maxitum Transmission Unit的简写,是OSI五层网络模型中链路层(datalink layer)对一次可以发送的最大数据的限制。

当需要传输的数据大于MSS或者MTU时,数据会被拆分成多个包进行传输。由于MSS是根据MTU计算出来的,因此当发送的数据满足MSS时,必然满足MTU。

为了更好的理解,我们先介绍一下在5层网络模型中应用通过TCP发送数据的流程:

对于应用层来说,只关心发送的数据DATA,将数据写入socket在内核中的发送缓冲区SO_SNDBUF即返回,操作系统会将SO_SNDBUF中的数据取出来进行发送。

    传输层会在DATA前面加上TCP Header,构成一个完整的TCP报文。

    当数据到达网络层(network layer)时,网络层会在TCP报文的基础上再添加一个IP Header,也就是将自己的网络地址加入到报文中。

    到数据链路层时,还会加上Datalink Header和CRC。

     当到达物理层时,会将SMAC(Source Machine,数据发送方的MAC地址),DMAC(Destination Machine,数据接受方的MAC地址 )和Type域加入。

可以发现数据在发送前,每一层都会在上一层的基础上增加一些内容,下图演示了MSS、MTU在这个过程中的作用。

     MTU是以太网传输数据方面的限制,每个以太网帧都有最小的大小64bytes最大不能超过1518bytes。刨去以太网帧的帧头 (DMAC目的MAC地址48bit=6Bytes

+SMAC源MAC地址48bit=6Bytes+Type域2bytes)14Bytes和帧尾 CRC校验部分4Bytes(这个部分有时候大家也把它叫做FCS),那么剩下承载上层协议的地方也

就是Data域最大就只能有1500Bytes这个值 我们就把它称之为MTU。

由于MTU限制了一次最多可以发送1500个字节,而TCP协议在发送DATA时,还会加上额外的TCP Header和Ip Header,因此刨去这两个部分,就是TCP协议一次可以

发送的实际应用数据的最大大小,也就是MSS。

      MSS长度=MTU长度-IP Header-TCP Header

TCP Header的长度是20字节,IPv4中IP Header长度是20字节,IPV6中IP Header长度是40字节,因此:在IPV4中,以太网MSS可以达到1460byte;在IPV6中,以太网

MSS可以达到1440byte。

需要注意的是MSS表示的一次可以发送的DATA的最大长度,而不是DATA的真实长度。发送方发送数据时,当SO_SNDBUF中的数据量大于MSS时,操作系统会将数据进

行拆分,使得每一部分都小于MSS,这就是拆包,然后每一部分都加上TCP Header,构成多个完整的TCP报文进行发送,当然经过网络层和数据链路层的时候,还会分别

加上相应的内容。

需要注意:  默认情况下,与外部通信的网卡的MTU大小是1500个字节。而本地回环地址的MTU大小为65535,这是因为本地测试时数据不需要走网卡,所以不受到1500的限制。

Nagle算法

       TCP/IP协议中,无论发送多少数据,总是要在数据(DATA)前面加上协议头(TCP Header+IP Header),同时,对方接收到数据,也需要发送ACK表示确认。

即使从键盘输入的一个字符,占用一个字节,可能在传输上造成41字节的包,其中包括1字节的有用信息和40字节的首部数据。这种情况转变成了4000%的消耗,这样的

情况对于重负载的网络来是无法接受的。

为了尽可能的利用网络带宽,TCP总是希望尽可能的发送足够大的数据。(一个连接会设置MSS参数,因此,TCP/IP希望每次都能够以MSS尺寸的数据块来发送数据)。

Nagle算法就是为了尽可能发送大块数据,避免网络中充斥着许多小数据块。

Nagle算法的基本定义是任意时刻,最多只能有一个未被确认的小段。 所谓“小段”,指的是小于MSS尺寸的数据块,所谓“未被确认”,是指一个数据块发送出去后,没有

收到对方发送的ACK确认该数据已收到。

  • Nagle算法的规则:

      1)如果SO_SNDBUF(发送缓冲区)中的数据长度达到MSS,则允许发送;

      2)如果该SO_SNDBUF中含有FIN,表示请求关闭连接,则先将SO_SNDBUF中的剩余数据发送,再关闭;

      3)设置了TCP_NODELAY=true选项,则允许发送。TCP_NODELAY是取消TCP的确认延迟机制,相当于禁用了Nagle 算法。

      4)未设置TCP_CORK选项时,若所有发出去的小数据包(包长度小于MSS)均被确认,则允许发送;

      5)上述条件都未满足,但发生了超时(一般为200ms),则立即发送。

  • 累积确认

有时候,发送方发送速度非常快,接收方一下下接收到了好几个 tcp 段,可以通过累积确认的方式,一次确认好几个 tcp 段,这样减少报文段的传输。

  • 捎带确认 有时候,双方互相发送数据,当接收到对方的 tcp 段后,先不着急确认,而是等待一会儿,连同数据和 ack 一起发送过去,这种情况叫捎带确认。如果等了一会儿(到时间了),接收方还没有数据要发送,那就直接回复一个纯 ack 过去,这样的 ack 称为延时的 ack(Delayed ACK)。

如果没有上述情况发生,ack延迟会等待多久发送呢?在linux上,所有的延时的 ack,延时时间都在 40 ms 左右(从收到数据到发送 ack 之间的时间)。