一、JVM内存模型及垃圾收集算法
**1.**根据Java虚拟机规范,JVM将内存划分为:
- New(年轻代)
- Tenured(年老代)
- 永久代(Perm)
其中New和Tenured属于堆内存,堆内存会从JVM启动参数(-Xmx:3G)指定的内存中分配,Perm不属于堆内存,有虚拟机直接分配,但可以通过**-XX:PermSize -XX:MaxPermSize** 等参数调整其大小。
- 年轻代(New):年轻代用来存放JVM刚分配的Java对象
- 年老代(Tenured):年轻代中经过垃圾回收没有回收掉的对象将被Copy到年老代
- 永久代(Perm):永久代存放Class、Method元信息,其大小跟项目的规模、类、方法的量有关,一般设置为128M就足够,设置原则是预留30%的空间。
New又分为几个部分:
- Eden:Eden用来存放JVM刚分配的对象
- Survivor1
- Survivro2:两个Survivor空间一样大,当Eden中的对象经过垃圾回收没有被回收掉时,会在两个Survivor之间来回Copy,当满足某个条件,比如Copy次数,就会被Copy到Tenured。显然,Survivor只是增加了对象在年轻代中的逗留时间,增加了被垃圾回收的可能性。
2.垃圾回收算法
垃圾回收算法可以分为三类,都基于标记-清除(复制)算法:
- Serial算法(单线程)
- 并行算法
- 并发算法
JVM会根据机器的硬件配置对每个内存代选择适合的回收算法,比如,如果机器多于1个核,会对年轻代选择并行算法,关于选择细节请参考JVM调优文档。
稍微解释下的是,**并行算法是用多线程进行垃圾回收,回收期间会暂停程序的执行,而并发算法,也是多线程回收,但期间不停止应用执行。**所以,并发算法适用于交互性高的一些程序。经过观察,并发算法会减少年轻代的大小,其实就是使用了一个大的年老代,这反过来跟并行算法相比吞吐量相对较低。
还有一个问题是,垃圾回收动作何时执行?
- 当年轻代内存满时,会引发一次普通GC,该GC仅回收年轻代。需要强调的时,年轻代满是指Eden代满,Survivor满不会引发GC
- 当年老代满时会引发Full GC,Full GC将会同时回收年轻代、年老代
- 当永久代满时也会引发Full GC,会导致Class、Method元信息的卸载
另一个问题是,何时会抛出OutOfMemoryException,并不是内存被耗空的时候才抛出
- JVM98%的时间都花费在内存回收
- 每次回收的内存小于2%
满足这两个条件将触发OutOfMemoryException,这将会留给系统一个微小的间隙以做一些Down之前的操作,比如手动打印Heap Dump。
二、内存泄漏及解决方法
1.系统崩溃前的一些现象:
- 每次垃圾回收的时间越来越长,由之前的10ms延长到50ms左右,FullGC的时间也有之前的0.5s延长到4、5s
- FullGC的次数越来越多,最频繁时隔不到1分钟就进行一次FullGC
- 年老代的内存越来越大并且每次FullGC后年老代没有内存被释放
之后系统会无法响应新的请求,逐渐到达OutOfMemoryError的临界值。
2.生成堆的dump文件
通过JMX的MBean生成当前的Heap信息,大小为一个3G(整个堆的大小)的hprof文件,如果没有启动JMX可以通过Java的jmap命令来生成该文件。
3.分析dump文件
下面要考虑的是如何打开这个3G的堆信息文件,显然一般的Window系统没有这么大的内存,必须借助高配置的Linux。当然我们可以借助X-Window把Linux上的图形导入到Window。我们考虑用下面几种工具打开该文件:
- Visual VM
- IBM HeapAnalyzer
- JDK 自带的Hprof工具
使用这些工具时为了确保加载速度,建议设置最大内存为6G。使用后发现,这些工具都无法直观地观察到内存泄漏,Visual VM虽能观察到对象大小,但看不到调用堆栈;HeapAnalyzer虽然能看到调用堆栈,却无法正确打开一个3G的文件。因此,我们又选用了Eclipse专门的静态内存分析工具:Mat。
4.分析内存泄漏
通过Mat我们能清楚地看到,哪些对象被怀疑为内存泄漏,哪些对象占的空间最大及对象的调用关系。针对本案,在ThreadLocal中有很多的JbpmContext实例,经过调查是JBPM的Context没有关闭所致。
另,通过Mat或JMX我们还可以分析线程状态,可以观察到线程被阻塞在哪个对象上,从而判断系统的瓶颈。
5.回归问题
Q:为什么崩溃前垃圾回收的时间越来越长?
A:根据内存模型和垃圾回收算法,垃圾回收分两部分:内存标记、清除(复制),标记部分只要内存大小固定时间是不变的,变的是复制部分,因为每次垃圾回收都有一些回收不掉的内存,所以增加了复制量,导致时间延长。所以,垃圾回收的时间也可以作为判断内存泄漏的依据
Q:为什么Full GC的次数越来越多?
A:因此内存的积累,逐渐耗尽了年老代的内存,导致新对象分配没有更多的空间,从而导致频繁的垃圾回收
Q:为什么年老代占用的内存越来越大?
A:因为年轻代的内存无法被回收,越来越多地被Copy到年老代
三、性能调优
除了上述内存泄漏外,我们还发现CPU长期不足3%,系统吞吐量不够,针对8core×16G、64bit的Linux服务器来说,是严重的资源浪费。
在CPU负载不足的同时,偶尔会有用户反映请求的时间过长,我们意识到必须对程序及JVM进行调优。从以下几个方面进行:
- 线程池:解决用户响应时间长的问题
- 连接池
- JVM启动参数:调整各代的内存比例和垃圾回收算法,提高吞吐量
- 程序算法:改进程序逻辑算法提高性能
1.Java线程池(java.util.concurrent.ThreadPoolExecutor)
大多数JVM6上的应用采用的线程池都是JDK自带的线程池,之所以把成熟的Java线程池进行罗嗦说明,是因为该线程池的行为与我们想象的有点出入。Java线程池有几个重要的配置参数:
- corePoolSize:核心线程数(最新线程数)
- maximumPoolSize:最大线程数,超过这个数量的任务会被拒绝,用户可以通过RejectedExecutionHandler接口自定义处理方式
- keepAliveTime:线程保持活动的时间
- workQueue:工作队列,存放执行的任务
Java线程池需要传入一个Queue参数(workQueue)用来存放执行的任务,而对Queue的不同选择,线程池有完全不同的行为:
SynchronousQueue:一个无容量的等待队列,一个线程的insert操作必须等待另一线程的remove操作,采用这个Queue线程池将会为每个任务分配一个新线程LinkedBlockingQueue :无界队列,采用该Queue,线程池将忽略maximumPoolSize参数,仅用corePoolSize的线程处理所有的任务,未处理的任务便在LinkedBlockingQueue中排队ArrayBlockingQueue: 有界队列,在有界队列和maximumPoolSize的作用下,程序将很难被调优:更大的Queue和小的maximumPoolSize将导致CPU的低负载;小的Queue和大的池,Queue就没起动应有的作用。
其实我们的要求很简单,希望线程池能跟连接池一样,能设置最小线程数、最大线程数,当最小数<任务<最大数时,应该分配新的线程处理;当任务>最大数时,应该等待有空闲线程再处理该任务。
但线程池的设计思路是,任务应该放到Queue中,当Queue放不下时再考虑用新线程处理,如果Queue满且无法派生新线程,就拒绝该任务。设计导致“先放等执行”、“放不下再执行”、“拒绝不等待”。所以,根据不同的Queue参数,要提高吞吐量不能一味地增大maximumPoolSize。
当然,要达到我们的目标,必须对线程池进行一定的封装,幸运的是ThreadPoolExecutor中留了足够的自定义接口以帮助我们达到目标。我们封装的方式是:
- 以SynchronousQueue作为参数,使maximumPoolSize发挥作用,以防止线程被无限制的分配,同时可以通过提高maximumPoolSize来提高系统吞吐量
- 自定义一个RejectedExecutionHandler,当线程数超过maximumPoolSize时进行处理,处理方式为隔一段时间检查线程池是否可以执行新Task,如果可以把拒绝的Task重新放入到线程池,检查的时间依赖keepAliveTime的大小。
2.连接池(org.apache.commons.dbcp.BasicDataSource)
在使用org.apache.commons.dbcp.BasicDataSource的时候,因为之前采用了默认配置,所以当访问量大时,通过JMX观察到很多Tomcat线程都阻塞在BasicDataSource使用的Apache ObjectPool的锁上,直接原因当时是因为BasicDataSource连接池的最大连接数设置的太小,默认的BasicDataSource配置,仅使用8个最大连接。
我还观察到一个问题,当较长的时间不访问系统,比如2天,DB上的Mysql会断掉所以的连接,导致连接池中缓存的连接不能用。为了解决这些问题,我们充分研究了BasicDataSource,发现了一些优化的点:
- Mysql默认支持100个链接,所以每个连接池的配置要根据集群中的机器数进行,如有2台服务器,可每个设置为60
- initialSize:参数是一直打开的连接数
- minEvictableIdleTimeMillis:该参数设置每个连接的空闲时间,超过这个时间连接将被关闭
- timeBetweenEvictionRunsMillis:后台线程的运行周期,用来检测过期连接
- maxActive:最大能分配的连接数
- maxIdle:最大空闲数,当连接使用完毕后发现连接数大于maxIdle,连接将被直接关闭。只有initialSize < x < maxIdle的连接将被定期检测是否超期。这个参数主要用来在峰值访问时提高吞吐量。
- initialSize是如何保持的?经过研究代码发现,BasicDataSource会关闭所有超期的连接,然后再打开initialSize数量的连接,这个特性与minEvictableIdleTimeMillis、timeBetweenEvictionRunsMillis一起保证了所有超期的initialSize连接都会被重新连接,从而避免了Mysql长时间无动作会断掉连接的问题。
3.JVM参数
在JVM启动参数中,可以设置跟内存、垃圾回收相关的一些参数设置,默认情况不做任何设置JVM会工作的很好,但对一些配置很好的Server和具体的应用必须仔细调优才能获得最佳性能。通过设置我们希望达到一些目标:
- GC的时间足够的小
- GC的次数足够的少
- 发生Full GC的周期足够的长
前两个目前是相悖的,要想GC时间小必须要一个更小的堆,要保证GC次数足够少,必须保证一个更大的堆,我们只能取其平衡。
(1)针对JVM堆的设置,一般可以通过-Xms -Xmx限定其最小、最大值,为了防止垃圾收集器在最小、最大之间收缩堆而产生额外的时间,我们通常把最大、最小设置为相同的值
(2)年轻代和年老代将根据默认的比例(1:2)分配堆内存,可以通过调整二者之间的比率NewRadio来调整二者之间的大小,也可以针对回收代,比如年轻代,通过 -XX:newSize -XX:MaxNewSize来设置其绝对大小。同样,为了防止年轻代的堆收缩,我们通常会把-XX:newSize -XX:MaxNewSize设置为同样大小
(3)年轻代和年老代设置多大才算合理?这个我问题毫无疑问是没有答案的,否则也就不会有调优。我们观察一下二者大小变化有哪些影响
- 更大的年轻代必然导致更小的年老代,大的年轻代会延长普通GC的周期,但会增加每次GC的时间;小的年老代会导致更频繁的Full GC
- 更小的年轻代必然导致更大年老代,小的年轻代会导致普通GC很频繁,但每次的GC时间会更短;大的年老代会减少Full GC的频率
- 如何选择应该依赖应用程序对象生命周期的分布情况:如果应用存在大量的临时对象,应该选择更大的年轻代;如果存在相对较多的持久对象,年老代应该适当增大。但很多应用都没有这样明显的特性,在抉择时应该根据以下两点:(A)本着Full GC尽量少的原则,让年老代尽量缓存常用对象,JVM的默认比例1:2也是这个道理 (B)通过观察应用一段时间,看其他在峰值时年老代会占多少内存,在不影响Full GC的前提下,根据实际情况加大年轻代,比如可以把比例控制在1:1。但应该给年老代至少预留1/3的增长空间
(4)在配置较好的机器上(比如多核、大内存),可以为年老代选择并行收集算法: -XX:+UseParallelOldGC ,默认为Serial收集
(5)线程堆栈的设置:每个线程默认会开启1M的堆栈,用于存放栈帧、调用参数、局部变量等,对大多数应用而言这个默认值太了,一般256K就足用。理论上,在内存不变的情况下,减少每个线程的堆栈,可以产生更多的线程,但这实际上还受限于操作系统。
(4)可以通过下面的参数打Heap Dump信息
- -XX:HeapDumpPath
- -XX:+PrintGCDetails
- -XX:+PrintGCTimeStamps
- -Xloggc:/usr/aaa/dump/heap_trace.txt
通过下面参数可以控制OutOfMemoryError时打印堆的信息
- -XX:+HeapDumpOnOutOfMemoryError
请看一下一个时间的Java参数配置:(服务器:Linux 64Bit,8Core×16G)
JAVA_OPTS="$JAVA_OPTS -server -Xms3G -Xmx3G -Xss256k -XX:PermSize=128m -XX:MaxPermSize=128m -XX:+UseParallelOldGC -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/usr/aaa/dump -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -Xloggc:/usr/aaa/dump/heap_trace.txt -XX:NewSize=1G -XX:MaxNewSize=1G"
经过观察该配置非常稳定,每次普通GC的时间在10ms左右,Full GC基本不发生,或隔很长很长的时间才发生一次
通过分析dump文件可以发现,每个1小时都会发生一次Full GC,经过多方求证,只要在JVM中开启了JMX服务,JMX将会1小时执行一次Full GC以清除引用,关于这点请参考附件文档。
4.程序算法调优:本次不作为重点
参考资料:
调优方法
一切都是为了这一步,调优,在调优之前,我们需要记住下面的原则:
1、多数的Java应用不需要在服务器上进行GC优化;
2、多数导致GC问题的Java应用,都不是因为我们参数设置错误,而是代码问题;
3、在应用上线之前,先考虑将机器的JVM参数设置到最优(最适合);
4、减少创建对象的数量;
5、减少使用全局变量和大对象;
6、GC优化是到最后不得已才采用的手段;
7、在实际使用中,分析GC情况优化代码比优化GC参数要多得多;
GC优化的目的有两个(www.360doc.com/content/13/…
1、将转移到老年代的对象数量降低到最小;
2、减少full GC的执行时间;
为了达到上面的目的,一般地,你需要做的事情有:
1、减少使用全局变量和大对象;
2、调整新生代的大小到最合适;
3、设置老年代的大小为最合适;
4、选择合适的GC收集器;
在上面的4条方法中,用了几个“合适”,那究竟什么才算合适,一般的,请参考上面“收集器搭配”和“启动内存分配”两节中的建议。但这些建议不是万能的,需要根据您的机器和应用情况进行发展和变化,实际操作中,可以将两台机器分别设置成不同的GC参数,并且进行对比,选用那些确实提高了性能或减少了GC时间的参数。
真正熟练的使用GC调优,是建立在多次进行GC监控和调优的实战经验上的,进行监控和调优的一般步骤为:
1,监控GC的状态
使用各种JVM工具,查看当前日志,分析当前JVM参数设置,并且分析当前堆内存快照和gc日志,根据实际的各区域内存划分和GC执行时间,觉得是否进行优化;
2,分析结果,判断是否需要优化
如果各项参数设置合理,系统没有超时日志出现,GC频率不高,GC耗时不高,那么没有必要进行GC优化;如果GC时间超过1-3秒,或者频繁GC,则必须优化;
注:如果满足下面的指标,则一般不需要进行GC:
Minor GC执行时间不到50ms;
Minor GC执行不频繁,约10秒一次;
Full GC执行时间不到1s;
Full GC执行频率不算频繁,不低于10分钟1次;
3,调整GC类型和内存分配
如果内存分配过大或过小,或者采用的GC收集器比较慢,则应该优先调整这些参数,并且先找1台或几台机器进行beta,然后比较优化过的机器和没有优化的机器的性能对比,并有针对性的做出最后选择;
4,不断的分析和调整
通过不断的试验和试错,分析并找到最合适的参数
5,全面应用参数
如果找到了最合适的参数,则将这些参数应用到所有服务器,并进行后续跟踪。
调优实例
上面的内容都是纸上谈兵,下面我们以一些真实例子来进行说明:
实例1:
笔者昨日发现部分开发测试机器出现异常:java.lang.OutOfMemoryError: GC overhead limit exceeded,这个异常代表:
GC为了释放很小的空间却耗费了太多的时间,其原因一般有两个:1,堆太小,2,有死循环或大对象;
笔者首先排除了第2个原因,因为这个应用同时是在线上运行的,如果有问题,早就挂了。所以怀疑是这台机器中堆设置太小;
使用ps -ef |grep "java"查看,发现:
该应用的堆区设置只有768m,而机器内存有2g,机器上只跑这一个java应用,没有其他需要占用内存的地方。另外,这个应用比较大,需要占用的内存也比较多;
笔者通过上面的情况判断,只需要改变堆中各区域的大小设置即可,于是改成下面的情况:
跟踪运行情况发现,相关异常没有再出现;
实例2:(www.360doc.com/content/13/…
一个服务系统,经常出现卡顿,分析原因,发现Full GC时间太长:
jstat -gcutil:
S0 S1 E O P YGC YGCT FGC FGCT GCT
12.16 0.00 5.18 63.78 20.32 54 2.047 5 6.946 8.993
分析上面的数据,发现Young GC执行了54次,耗时2.047秒,每次Young GC耗时37ms,在正常范围,而Full GC执行了5次,耗时6.946秒,每次平均1.389s,数据显示出来的问题是:Full GC耗时较长,分析该系统的是指发现,NewRatio=9,也就是说,新生代和老生代大小之比为1:9,这就是问题的原因:
1,新生代太小,导致对象提前进入老年代,触发老年代发生Full GC;
2,老年代较大,进行Full GC时耗时较大;
优化的方法是调整NewRatio的值,调整到4,发现Full GC没有再发生,只有Young GC在执行。这就是把对象控制在新生代就清理掉,没有进入老年代(这种做法对一些应用是很有用的,但并不是对所有应用都要这么做)
实例3:
一应用在性能测试过程中,发现内存占用率很高,Full GC频繁,使用sudo -u admin -H jmap -dump:format=b,file=文件名.hprof pid 来dump内存,生成dump文件,并使用Eclipse下的mat差距进行分析,发现:
从图中可以看出,这个线程存在问题,队列LinkedBlockingQueue所引用的大量对象并未释放,导致整个线程占用内存高达378m,此时通知开发人员进行代码优化,将相关对象释放掉即可。
类加载机制深度剖析
1、类加载过程
多个java文件经过编译打包生成可运行jar包,最终由java命令运行某个主类的main函数启动程序,这里首先需要通过类加载器把主类加载到JVM。
主类在运行过程中如果使用到其它类,会逐步加载这些类。
注意,jar包里的类不是一次性全部加载的,是使用到时才加载。
类加载到使用整个过程有如下几步:
加载 >> 验证 >> 准备 >> 解析 >> 初始化 >> 使用 >> 卸载
- 加载:在硬盘上查找并通过IO读入字节码文件,使用到类时才会加载,例如调用类的main()方法,new对象等等,在加载阶段会在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口
- 验证:校验字节码文件的正确性
- 准备:给类的静态变量分配内存,并赋予默认值
- 解析:将符号引用替换为直接引用,该阶段会把一些静态方法(符号引用,比如main()方法)替换为指向数据所存内存的指针或句柄等(直接引用),这是所谓的静态链接过程(类加载期间完成),动态链接是在程序运行期间完成的将符号引用替换为直接引用,下节课会讲到动态链接
- 初始化:对类的静态变量初始化为指定的值,执行静态代码块
2、类加载器和双亲委派机制
上面的类加载过程主要是通过类加载器来实现的,Java里有如下几种类加载器
- 启动类加载器:负责加载支撑JVM运行的位于JRE的lib目录下的核心类库,比如rt.jar、charsets.jar等
- 扩展类加载器:负责加载支撑JVM运行的位于JRE的lib目录下的ext扩展目录中的JAR类包
- 应用程序类加载器:负责加载ClassPath路径下的类包,主要就是加载你自己写的那些类
- 自定义加载器:负责加载用户自定义路径下的类包
看一个类加载器示例:
public class TestJDKClassLoader {
public static void main(String[] args){
System.out.println(String.class.getClassLoader());
System.out.println(com.sun.crypto.provider.DESKeyFactory.class.getClassLoader().getClass().getName());
System.out.println(TestJDKClassLoader.class.getClassLoader().getClass().getName());
System.out.println(ClassLoader.getSystemClassLoader().getClass().getName());
}
}
运行结果:
null //启动类加载器是C++语言实现,所以打印不出来
sun.misc.Launcher$ExtClassLoader
sun.misc.Launcher$AppClassLoader
sun.misc.Launcher$AppClassLoader
自定义一个类加载器示例:
自定义类加载器只需要继承 java.lang.ClassLoader 类,该类有两个核心方法,一个是loadClass(String, boolean),实现了双亲委派机制,大体逻辑
- 首先,检查一下指定名称的类是否已经加载过,如果加载过了,就不需要再加载,直接返回。
- 如果此类没有加载过,那么,再判断一下是否有父加载器;如果有父加载器,则由父加载器加载(即调用parent.loadClass(name, false);).或者是调用bootstrap类加载器来加载。
- 如果父加载器及bootstrap类加载器都没有找到指定的类,那么调用当前类加载器的findClass方法来完成类加载。
还有一个方法是findClass,默认实现是抛出异常,所以我们自定义类加载器主要是重写findClass方法。运行结果:
=======自己的加载器加载类调用方法=======
com.tuling.jvm.MyClassLoaderTest$MyClassLoader
全盘负责委托机制
“全盘负责”是指当一个ClassLoder装载一个类时,除非显示的使用另外一个ClassLoder,该类所依赖及引用的类也由这个ClassLoder载入。
双亲委派机制
JVM类加载器是有亲子层级结构的,如下图
这里类加载其实就有一个双亲委派机制,加载某个类时会先委托父加载器寻找目标类,找不到再委托上层父加载器加载,如果所有父加载器在自己的加载类路径下都找不到目标类,则在自己的类加载路径中查找并载入目标类。
比如我们的Math类,最先会找应用程序类加载器加载,应用程序类加载器会先委托扩展类加载器加载,扩展类加载器再委托启动类加载器,顶层启动类加载器在自己的类加载路径里找了半天没找到Math类,则向下退回加载Math类的请求,扩展类加载器收到回复就自己加载,在自己的类加载路径里找了半天也没找到Math类,又向下退回Math类的加载请求给应用程序类加载器,应用程序类加载器于是在自己的类加载路径里找Math类,结果找到了就自己加载了。
双亲委派机制说简单点就是,先找父亲加载,不行再由儿子自己加载
为什么要设计双亲委派机制?
- 沙箱安全机制:自己写的java.lang.String.class类不会被加载,这样便可以防止核心API库被随意篡改
- 避免类的重复加载:当父亲已经加载了该类时,就没有必要子ClassLoader再加载一次,保证被加载类的唯一性
看一个类加载示例:
package java.lang;
public class String {
public static void main(String[] args) {
System.out.println("**************My String Class**************");
}
}
运行结果:
错误: 在类 java.lang.String 中找不到 main 方法, 请将 main 方法定义为:
public static void main(String[] args)
否则 JavaFX 应用程序类必须扩展javafx.application.Application
再来一个沙箱安全机制示例,尝试打破双亲委派机制,用自定义类加载器加载我们自己实现的
java.lang.String.class
public class MyClassLoaderTest {
static class MyClassLoader extends ClassLoader {
private String classPath;
public MyClassLoader(String classPath) {
this.classPath = classPath;
}
private byte[] loadByte(String name) throws Exception {
name = name.replaceAll("\.", "/");
FileInputStream fis = new FileInputStream(classPath + "/" + name
+ ".class");
int len = fis.available();
byte[] data = new byte[len];
fis.read(data);
fis.close();
return data;
}
protected Class<?> findClass(String name) throws ClassNotFoundException {
try {
byte[] data = loadByte(name);
return defineClass(name, data, 0, data.length);
} catch (Exception e) {
e.printStackTrace();
throw new ClassNotFoundException();
}
}
/**
* 重写类加载方法,实现自己的加载逻辑,不委派给双亲加载
* @param name
* @param resolve
* @return
* @throws ClassNotFoundException
*/
protected Class<?> loadClass(String name, boolean resolve)
throws ClassNotFoundException {
synchronized (getClassLoadingLock(name)) {
// First, check if the class has already been loaded
Class<?> c = findLoadedClass(name);
if (c == null) {
// If still not found, then invoke findClass in order
// to find the class.
long t1 = System.nanoTime();
c = findClass(name);
// this is the defining class loader; record the stats
sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
sun.misc.PerfCounter.getFindClasses().increment();
}
if (resolve) {
resolveClass(c);
}
return c;
}
}
}
public static void main(String args[]) throws Exception {
MyClassLoader classLoader = new MyClassLoader("D:/test");
//尝试用自己改写类加载机制去加载自己写的java.lang.String.class
Class clazz = classLoader.loadClass("java.lang.String");
Object obj = clazz.newInstance();
Method method= clazz.getDeclaredMethod("sout", null);
method.invoke(obj, null);
System.out.println(clazz.getClassLoader().getClass().getName());
}
}
运行结果:
java.lang.SecurityException: Prohibited package name: java.lang
at java.lang.ClassLoader.preDefineClass(ClassLoader.java:659)
at java.lang.ClassLoader.defineClass(ClassLoader.java:758)
打破双亲委派
以Tomcat类加载为例,Tomcat 如果使用默认的双亲委派类加载机制行不行?
我们思考一下:Tomcat是个web容器, 那么它要解决什么问题:
-
一个web容器可能需要部署两个应用程序,不同的应用程序可能会依赖同一个第三方类库的不同版本,不能要求同一个类库在同一个服务器只有一份,因此要保证每个应用程序的类库都是独立的,保证相互隔离。
-
部署在同一个web容器中相同的类库相同的版本可以共享。否则,如果服务器有10个应用程序,那么要有10份相同的类库加载进虚拟机。
-
web容器也有自己依赖的类库,不能与应用程序的类库混淆。基于安全考虑,应该让容器的类库和程序的类库隔离开来。
-
web容器要支持jsp的修改,我们知道,jsp 文件最终也是要编译成class文件才能在虚拟机中运行,但程序运行后修改jsp已经是司空见惯的事情, web容器需要支持 jsp 修改后不用重启。
再看看我们的问题:Tomcat 如果使用默认的双亲委派类加载机制行不行?
答案是不行的。为什么?
第一个问题,如果使用默认的类加载器机制,那么是无法加载两个相同类库的不同版本的,默认的类加器是不管你是什么版本的,只在乎你的全限定类名,并且只有一份。第二个问题,默认的类加载器是能够实现的,因为他的职责就是保证唯一性。
第三个问题和第一个问题一样。
我们再看第四个问题,我们想我们要怎么实现jsp文件的热加载,jsp 文件其实也就是class文件,那么如果修改了,但类名还是一样,类加载器会直接取方法区中已经存在的,修改后的jsp是不会重新加载的。那么怎么办呢?我们可以直接卸载掉这jsp文件的类加载器,所以你应该想到了,每个jsp文件对应一个唯一的类加载器,当一个jsp文件修改了,就直接卸载这个jsp类加载器。重新创建类加载器,重新加载jsp文件。
Tomcat自定义加载器详解
tomcat的几个主要类加载器:
- commonLoader:Tomcat最基本的类加载器,加载路径中的class可以被Tomcat容器本身以及各个Webapp访问;
- catalinaLoader:Tomcat容器私有的类加载器,加载路径中的class对于Webapp不可见;
- sharedLoader:各个Webapp共享的类加载器,加载路径中的class对于所有Webapp可见,但是对于Tomcat容器不可见;
- WebappClassLoader:各个Webapp私有的类加载器,加载路径中的class只对当前Webapp可见;
从图中的委派关系中可以看出:
CommonClassLoader能加载的类都可以被CatalinaClassLoader和SharedClassLoader使用,从而实现了公有类库的共用,而CatalinaClassLoader和SharedClassLoader自己能加载的类则与对方相互隔离。
WebAppClassLoader可以使用SharedClassLoader加载到的类,但各个WebAppClassLoader实例之间相互隔离。
而JasperLoader的加载范围仅仅是这个JSP文件所编译出来的那一个.Class文件,它出现的目的就是为了被丢弃:当Web容器检测到JSP文件被修改时,会替换掉目前的JasperLoader的实例,并通过再建立一个新的Jsp类加载器来实现JSP文件的热加载功能。
tomcat 这种类加载机制违背了java 推荐的双亲委派模型了吗?答案是:违背了。
我们前面说过,双亲委派机制要求除了顶层的启动类加载器之外,其余的类加载器都应当由自己的父类加载器加载。
很显然,tomcat 不是这样实现,tomcat 为了实现隔离性,没有遵守这个约定,每个webappClassLoader加载自己的目录下的class文件,不会传递给父类加载器,打破了双亲委派机制。
JVM内存模型深度剖析
1、JVM整体结构及内存模型
2、JVM内存参数设置
Spring Boot程序的JVM参数设置格式(Tomcat启动直接加在bin目录下catalina.sh文件里):
java -Xms2048M -Xmx2048M -Xmn1024M -Xss512K -XX:MetaspaceSize=256M -XX:MaxMetaspaceSize=256M -jar microservice-eureka-server.jar
关于元空间的JVM参数有两个:-XX:MetaspaceSize=N和 -XX:MaxMetaspaceSize=N,对于64位JVM来说,元空间的默认初始大小是21MB,默认的元空间的最大值是无限。MaxMetaspaceSize用于设置metaspace区域的最大值。
元空间的动态扩展,默认–XX:MetaspaceSize值为21MB的高水位线。一旦触及则Full GC将被触发并卸载没有用的类(类对应的类加载器不再存活),然后高水位线将会重置。新的高水位线的值取决于GC后释放的元空间。如果释放的空间少,这个高水位线则上升。如果释放空间过多,则高水位线下降。
由于调整元空间的大小需要Full GC,这是非常昂贵的操作,如果应用在启动的时候发生大量Full GC,通常都是由于永久代或元空间发生了大小调整,基于这种情况,一般建议在JVM参数中将MetaspaceSize和MaxMetaspaceSize设置成一样的值,并设置得比初始值要大,对于8G物理内存的机器来说,一般我会将这两个值都设置为256M。
- Jdk1.6及之前: 有永久代, 常量池在方法区
- Jdk1.7: 有永久代,但已经逐步“去永久代”,常量池在堆
- Jdk1.8及之后: 无永久代,常量池在元空间
StackOverflowError示例:
// JVM设置 -Xss128k(默认1M)
public class StackOverflowTest {
static int count = 0;
static void redo() {
count++;
redo();
}
public static void main(String[] args) {
try {
redo();
} catch (Throwable t) {
t.printStackTrace();
System.out.println(count);
}
}
}
运行结果:
java.lang.StackOverflowError
at com.tuling.jvm.StackOverflowTest.redo(StackOverflowTest.java:12)
at com.tuling.jvm.StackOverflowTest.redo(StackOverflowTest.java:13)
at com.tuling.jvm.StackOverflowTest.redo(StackOverflowTest.java:13)
结论:
-Xss设置越小count值越小,说明一个线程栈里能分配的栈帧就越少,但是对JVM整体来说能开启的线程数会更多
JVM内存参数大小该如何设置?
JVM参数大小设置并没有固定标准,需要根据实际项目情况分析,给大家举个例子
日均百万级订单交易系统如何设置JVM参数
一天百万级订单这个绝对是现在顶尖电商公司交易量级,对于这种量级的系统我们该如何设置JVM参数了?
我们可以试着估算下,其实日均百万订单主要也就是集中在当日的几个小时生成的,我们假设是三小时,也就是每秒大概生成100单左右。
这种系统我们一般至少要三四台机器去支撑,假设我们部署了四台机器,也就是每台每秒钟大概处理完成25单左右,往上毛估每秒处理30单吧。
也就是每秒大概有30个订单对象在堆空间的新生代内生成,一个订单对象的大小跟里面的字段多少及类型有关,比如int类型的订单id和用户id等字段,double类型的订单金额等,int类型占用4字节,double类型占用8字节,初略估计下一个订单对象大概1KB左右,也就是说每秒会有30KB的订单对象分配在新生代内。
真实的订单交易系统肯定还有大量的其他业务对象,比如购物车、优惠券、积分、用户信息、物流信息等等,实际每秒分配在新生代内的对象大小应该要再扩大几十倍,我们假设30倍,也就是每秒订单系统会往新生代内分配近1M的对象数据,这些数据一般在订单提交完的操作做完之后基本都会成为垃圾对象。
我们一般线上服务器的配置用得较多的就是双核4G或4核8G,如果我们用双核4G的机器,因为服务器操作系统包括一些后台服务本身可能就要占用1G多内存,也就是说给JVM进程最多分配2G多点内存,刨开给方法区和虚拟机栈分配的内存,那么堆内存可能也就能分配到1G多点,对应的新生代内存最后可能就几百M,那么意味着没过几百秒新生代就会被垃圾对象撑满而触发minor gc,这么频繁的gc对系统的性能还是有一定影响的。
如果我们选择4核8G的服务器,就可以给JVM进程分配四五个G的内存空间,那么堆内存可以分到三四个G左右,于是可以给新生代至少分配2G,这样算下差不多需要半小时到一小时才能把新生代放满触发minor gc,这就大大降低了minor gc的频率,所以一般我们线上服务器用得较多的还是4核8G的服务器配置。
如果系统业务量继续增长那么可以水平扩容增加更多的机器,比如五台甚至十台机器,这样每台机器的JVM处理请求可以保证在合适范围,不至于压力过大导致大量的gc。
有的同学可能有疑问说双核4G的服务器好像也够用啊,无非就是minor gc频率稍微高一点呀,不是说minor gc对系统的影响不是特别大吗,我成本有限,只能用这样的服务器啊。
其实如果系统业务量比较平稳也能凑合用,如果经常业务量可能有个几倍甚至几十倍的增长,比如时不时的搞个促销秒杀活动什么的,那我们思考下会不会有什么问题。
假设业务量暴增几十倍,在不增加机器的前提下,整个系统每秒要生成几千个订单,之前每秒往新生代里分配的1M对象数据可能增长到几十M,而且因为系统压力骤增,一个订单的生成不一定能在1秒内完成,可能要几秒甚至几十秒,那么就有很多对象会在新生代里存活几十秒之后才会变为垃圾对象,如果新生代只分配了几百M,意味着一二十秒就会触发一次minor gc,那么很有可能部分对象就会被挪到老年代,这些对象到了老年代后因为对应的业务操作执行完毕,马上又变为了垃圾对象,随着系统不断运行,被挪到老年代的对象会越来越多,最终可能又会导致full gc,full gc对系统的性能影响还是比较大的。
如果我们用的是4核8G的服务器,新生代分配到2G以上的水平,那么至少也要几百秒才会放满新生代触发minor gc,那些在新生代即便存活几十秒的对象在minor gc触发的时候大部分已经变为垃圾对象了,都可以被及时回收,基本不会被挪到老年代,这样可以大大减少老年代的full gc次数。
3、逃逸分析
JVM的运行模式有三种:
解释模式(Interpreted Mode):只使用解释器(-Xint 强制JVM使用解释模式),执行一行JVM字节码就编译一行为机器码
编译模式(Compiled Mode):只使用编译器(-Xcomp JVM使用编译模式),先将所有JVM字节码一次编译为机器码,然后一次性执行所有机器码
混合模式(Mixed Mode):依然使用解释模式执行代码,但是对于一些 "热点" 代码采用编译模式执行,JVM一般采用混合模式执行代码
解释模式启动快,对于只需要执行部分代码,并且大多数代码只会执行一次的情况比较适合;编译模式启动慢,但是后期执行速度快,而且比较占用内存,因为机器码的数量至少是JVM字节码的十倍以上,这种模式适合代码可能会被反复执行的场景;
混合模式是JVM默认采用的执行代码方式,一开始还是解释执行,但是对于少部分 “热点 ”代码会采用编译模式执行,这些热点代码对应的机器码会被缓存起来,下次再执行无需再编译,这就是我们常见的JIT(Just In Time Compiler)即时编译技术。
在即时编译过程中JVM可能会对我们的代码做一些优化,比如对象逃逸分析等。
对象逃逸分析:就是分析对象动态作用域,当一个对象在方法中被定义后,它可能被外部方法所引用,例如作为调用参数传递到其他地方中。
public User test1() {
User user = new User();
user.setId(1);
user.setName("zhuge");
//TODO 保存到数据库
return user;
}
public void test2() {
User user = new User();
user.setId(1);
user.setName("zhuge");
//TODO 保存到数据库
}
很显然test1方法中的user对象被返回了,这个对象的作用域范围不确定,test2方法中的user对象我们可以确定当方法结束这个对象就可以认为是无效对象了,对于这样的对象我们其实可以将其分配的栈内存里,让其在方法结束时跟随栈内存一起被回收掉。
JVM对于这种情况可以通过开启逃逸分析参数(-XX:+DoEscapeAnalysis)来优化对象内存分配位置,JDK7之后默认开启逃逸分析,如果要关闭使用参数(-XX:-DoEscapeAnalysis)。
JVM 调优概述
性能定义
- 吞吐量 - 指不考虑 GC 引起的停顿时间或内存消耗,垃圾收集器能支撑应用达到的最高性能指标。
- 延迟 - 其度量标准是缩短由于垃圾啊收集引起的停顿时间或者完全消除因垃圾收集所引起的停顿,避免应用运行时发生抖动。
- 内存占用 - 垃圾收集器流畅运行所需要的内存数量。
调优原则
GC 优化的两个目标:
- 将进入老年代的对象数量降到最低
- 减少 Full GC 的执行时间
GC 优化的基本原则是:将不同的 GC 参数应用到两个及以上的服务器上然后比较它们的性能,然后将那些被证明可以提高性能或减少 GC 执行时间的参数应用于最终的工作服务器上。
将进入老年代的对象数量降到最低
除了可以在 JDK7 及更高版本中使用的 G1 收集器以外,其他分代 GC 都是由 Oracle JVM 提供的。关于分代 GC,就是对象在 Eden 区被创建,随后被转移到 Survivor 区,在此之后剩余的对象会被转入老年代。也有一些对象由于占用内存过大,在 Eden 区被创建后会直接被传入老年代。老年代 GC 相对来说会比新生代 GC 更耗时,因此,减少进入老年代的对象数量可以显著降低 Full GC 的频率。你可能会以为减少进入老年代的对象数量意味着把它们留在新生代,事实正好相反,新生代内存的大小是可以调节的。
降低 Full GC 的时间
Full GC 的执行时间比 Minor GC 要长很多,因此,如果在 Full GC 上花费过多的时间(超过 1s),将可能出现超时错误。
- 如果通过减小老年代内存来减少 Full GC 时间,可能会引起 OutOfMemoryError 或者导致 Full GC 的频率升高。
- 另外,如果通过增加老年代内存来降低 Full GC 的频率,Full GC 的时间可能因此增加。
因此,你需要把老年代的大小设置成一个“合适”的值。
GC 优化需要考虑的 JVM 参数
类型参数描述堆内存大小-Xms启动 JVM 时堆内存的大小-Xmx堆内存最大限制新生代空间大小-XX:NewRatio新生代和老年代的内存比-XX:NewSize新生代内存大小-XX:SurvivorRatioEden 区和 Survivor 区的内存比
GC 优化时最常用的参数是-Xms,-Xmx和-XX:NewRatio。-Xms和-Xmx参数通常是必须的,所以NewRatio的值将对 GC 性能产生重要的影响。
有些人可能会问如何设置永久代内存大小,你可以用-XX:PermSize和-XX:MaxPermSize参数来进行设置,但是要记住,只有当出现OutOfMemoryError错误时你才需要去设置永久代内存。
GC 优化的过程
GC 优化的过程和大多数常见的提升性能的过程相似,下面是笔者使用的流程:
1.监控 GC 状态
你需要监控 GC 从而检查系统中运行的 GC 的各种状态。
2.分析监控结果后决定是否需要优化 GC
在检查 GC 状态后,你需要分析监控结构并决定是否需要进行 GC 优化。如果分析结果显示运行 GC 的时间只有 0.1-0.3 秒,那么就不需要把时间浪费在 GC 优化上,但如果运行 GC 的时间达到 1-3 秒,甚至大于 10 秒,那么 GC 优化将是很有必要的。
但是,如果你已经分配了大约 10GB 内存给 Java,并且这些内存无法省下,那么就无法进行 GC 优化了。在进行 GC 优化之前,你需要考虑为什么你需要分配这么大的内存空间,如果你分配了 1GB 或 2GB 大小的内存并且出现了OutOfMemoryError,那你就应该执行**堆快照(heap dump)**来消除导致异常的原因。
注意: **堆快照(heap dump)**是一个用来检查 Java 内存中的对象和数据的内存文件。该文件可以通过执行 JDK 中的
jmap命令来创建。在创建文件的过程中,所有 Java 程序都将暂停,因此,不要在系统执行过程中创建该文件。 你可以在互联网上搜索 heap dump 的详细说明。
3.设置 GC 类型/内存大小
如果你决定要进行 GC 优化,那么你需要选择一个 GC 类型并且为它设置内存大小。此时如果你有多个服务器,请如上文提到的那样,在每台机器上设置不同的 GC 参数并分析它们的区别。
4.分析结果
在设置完 GC 参数后就可以开始收集数据,请在收集至少 24 小时后再进行结果分析。如果你足够幸运,你可能会找到系统的最佳 GC 参数。如若不然,你还需要分析输出日志并检查分配的内存,然后需要通过不断调整 GC 类型/内存大小来找到系统的最佳参数。
5.如果结果令人满意,将参数应用到所有服务器上并结束 GC 优化
如果 GC 优化的结果令人满意,就可以将参数应用到所有服务器上,并停止 GC 优化。
在下面的章节中,你将会看到上述每一步所做的具体工作。
命令
jmap
jmap 即 JVM Memory Map。
jmap 用于生成 heap dump 文件。
如果不使用这个命令,还可以使用 -XX:+HeapDumpOnOutOfMemoryError 参数来让虚拟机出现 OOM 的时候,自动生成 dump 文件。
jmap 不仅能生成 dump 文件,还可以查询 finalize 执行队列、Java 堆和永久代的详细信息,如当前使用率、当前使用的是哪种收集器等。
命令格式:
jmap [option] LVMID
option 参数:
- dump - 生成堆转储快照
- finalizerinfo - 显示在 F-Queue 队列等待 Finalizer 线程执行 finalizer 方法的对象
- heap - 显示 Java 堆详细信息
- histo - 显示堆中对象的统计信息
- permstat - to print permanent generation statistics
- F - 当-dump 没有响应时,强制生成 dump 快照
示例:jmap -dump PID 生成堆快照
dump 堆到文件,format 指定输出格式,live 指明是活着的对象,file 指定文件名
$ jmap -dump:live,format=b,file=dump.hprof 28920
Dumping heap to /home/xxx/dump.hprof ...
Heap dump file created
dump.hprof 这个后缀是为了后续可以直接用 MAT(Memory Anlysis Tool)打开。
示例:jmap -heap 查看指定进程的堆信息
注意:使用 CMS GC 情况下,jmap -heap 的执行有可能会导致 java 进程挂起。
jmap -heap PID
[root@chances bin]# ./jmap -heap 12379
Attaching to process ID 12379, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 17.0-b16
using thread-local object allocation.
Parallel GC with 6 thread(s)
Heap Configuration:
MinHeapFreeRatio = 40
MaxHeapFreeRatio = 70
MaxHeapSize = 83886080 (80.0MB)
NewSize = 1310720 (1.25MB)
MaxNewSize = 17592186044415 MB
OldSize = 5439488 (5.1875MB)
NewRatio = 2
SurvivorRatio = 8
PermSize = 20971520 (20.0MB)
MaxPermSize = 88080384 (84.0MB)
Heap Usage:
PS Young Generation
Eden Space:
capacity = 9306112 (8.875MB)
used = 5375360 (5.1263427734375MB)
free = 3930752 (3.7486572265625MB)
57.761608714788736% used
From Space:
capacity = 9306112 (8.875MB)
used = 3425240 (3.2665634155273438MB)
free = 5880872 (5.608436584472656MB)
36.80634834397007% used
To Space:
capacity = 9306112 (8.875MB)
used = 0 (0.0MB)
free = 9306112 (8.875MB)
0.0% used
PS Old Generation
capacity = 55967744 (53.375MB)
used = 48354640 (46.11457824707031MB)
free = 7613104 (7.2604217529296875MB)
86.39733629427693% used
PS Perm Generation
capacity = 62062592 (59.1875MB)
used = 60243112 (57.452308654785156MB)
free = 1819480 (1.7351913452148438MB)
97.06831451706046% used
jstack
jstack 用于生成 java 虚拟机当前时刻的线程快照。
线程快照是当前 java 虚拟机内每一条线程正在执行的方法堆栈的集合,生成线程快照的主要目的是定位线程出现长时间停顿的原因,如线程间死锁、死循环、请求外部资源导致的长时间等待等。
线程出现停顿的时候通过 jstack 来查看各个线程的调用堆栈,就可以知道没有响应的线程到底在后台做什么事情,或者等待什么资源。 如果 java 程序崩溃生成 core 文件,jstack 工具可以用来获得 core 文件的 java stack 和 native stack 的信息,从而可以轻松地知道 java 程序是如何崩溃和在程序何处发生问题。另外,jstack 工具还可以附属到正在运行的 java 程序中,看到当时运行的 java 程序的 java stack 和 native stack 的信息, 如果现在运行的 java 程序呈现 hung 的状态,jstack 是非常有用的。
命令格式:
jstack [option] LVMID
option 参数:
-F- 当正常输出请求不被响应时,强制输出线程堆栈-l- 除堆栈外,显示关于锁的附加信息-m- 如果调用到本地方法的话,可以显示 C/C++的堆栈
jps
jps(JVM Process Status Tool),显示指定系统内所有的 HotSpot 虚拟机进程。
命令格式:
jps [options] [hostid]
option 参数:
-l- 输出主类全名或 jar 路径-q- 只输出 LVMID-m- 输出 JVM 启动时传递给 main()的参数-v- 输出 JVM 启动时显示指定的 JVM 参数
其中[option]、[hostid]参数也可以不写。
$ jps -l -m
28920 org.apache.catalina.startup.Bootstrap start
11589 org.apache.catalina.startup.Bootstrap start
25816 sun.tools.jps.Jps -l -m
jstat
jstat(JVM statistics Monitoring),是用于监视虚拟机运行时状态信息的命令,它可以显示出虚拟机进程中的类装载、内存、垃圾收集、JIT 编译等运行数据。
命令格式:
jstat [option] LVMID [interval] [count]
参数:
- [option] - 操作参数
- LVMID - 本地虚拟机进程 ID
- [interval] - 连续输出的时间间隔
- [count] - 连续输出的次数
jhat
jhat(JVM Heap Analysis Tool),是与 jmap 搭配使用,用来分析 jmap 生成的 dump,jhat 内置了一个微型的 HTTP/HTML 服务器,生成 dump 的分析结果后,可以在浏览器中查看。
注意:一般不会直接在服务器上进行分析,因为 jhat 是一个耗时并且耗费硬件资源的过程,一般把服务器生成的 dump 文件复制到本地或其他机器上进行分析。
命令格式:
jhat [dumpfile]
jinfo
jinfo(JVM Configuration info),用于实时查看和调整虚拟机运行参数。
之前的 jps -v 口令只能查看到显示指定的参数,如果想要查看未被显示指定的参数的值就要使用 jinfo 口令
命令格式:
jinfo [option] [args] LVMID
option 参数:
- -flag : 输出指定 args 参数的值
- -flags : 不需要 args 参数,输出所有 JVM 参数的值
- -sysprops : 输出系统属性,等同于 System.getProperties()
HotSpot VM 参数
详细参数说明请参考官方文档:Java HotSpot VM Options,这里仅列举常用参数。
JVM 内存配置
配置描述-Xms堆空间初始值。-Xmx堆空间最大值。-XX:NewSize新生代空间初始值。-XX:MaxNewSize新生代空间最大值。-Xmn新生代空间大小。-XX:PermSize永久代空间的初始值。-XX:MaxPermSize永久代空间的最大值。
GC 类型配置
配置描述-XX:+UseSerialGC串行垃圾回收器-XX:+UseParallelGC并行垃圾回收器-XX:+UseParNewGC使用 ParNew + Serial Old 垃圾回收器组合-XX:+UseConcMarkSweepGC并发标记扫描垃圾回收器-XX:ParallelCMSThreads=并发标记扫描垃圾回收器 = 为使用的线程数量-XX:+UseG1GCG1 垃圾回收器
辅助配置
配置描述-XX:+PrintGCDetails打印 GC 日志-Xloggc:<filename>指定 GC 日志文件名-XX:+HeapDumpOnOutOfMemoryError内存溢出时输出堆快照文件
典型配置
堆大小设置
年轻代的设置很关键。
JVM 中最大堆大小有三方面限制:
-
相关操作系统的数据模型(32-bt 还是 64-bit)限制;
-
系统的可用虚拟内存限制;
-
系统的可用物理内存限制。
整个堆大小 = 年轻代大小 + 年老代大小 + 持久代大小
- 持久代一般固定大小为 64m。使用
-XX:PermSize设置。 - 官方推荐年轻代占整个堆的 3/8。使用
-Xmn设置。
回收器选择
JVM 给了三种选择:串行收集器、并行收集器、并发收集器。
JVM 实战
分析 GC 日志
获取 GC 日志
获取 GC 日志有两种方式:
- 使用命令动态查看
- 在容器中设置相关参数打印 GC 日志
jstat -gc 统计垃圾回收堆的行为:
jstat -gc 1262
S0C S1C S0U S1U EC EU OC OU PC PU YGC YGCT FGC FGCT GCT
26112.0 24064.0 6562.5 0.0 564224.0 76274.5 434176.0 388518.3 524288.0 42724.7 320 6.417 1 0.398 6.815
也可以设置间隔固定时间来打印:
$ jstat -gc 1262 2000 20
这个命令意思就是每隔 2000ms 输出 1262 的 gc 情况,一共输出 20 次
Tomcat 设置示例:
JAVA_OPTS="-server -Xms2000m -Xmx2000m -Xmn800m -XX:PermSize=64m -XX:MaxPermSize=256m -XX:SurvivorRatio=4
-verbose:gc -Xloggc:$CATALINA_HOME/logs/gc.log
-Djava.awt.headless=true
-XX:+PrintGCTimeStamps -XX:+PrintGCDetails
-Dsun.rmi.dgc.server.gcInterval=600000 -Dsun.rmi.dgc.client.gcInterval=600000
-XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=15"
-Xms2000m -Xmx2000m -Xmn800m -XX:PermSize=64m -XX:MaxPermSize=256mXms,即为 jvm 启动时得 JVM 初始堆大小,Xmx 为 jvm 的最大堆大小,xmn 为新生代的大小,permsize 为永久代的初始大小,MaxPermSize 为永久代的最大空间。-XX:SurvivorRatio=4SurvivorRatio 为新生代空间中的 Eden 区和救助空间 Survivor 区的大小比值,默认是 8,则两个 Survivor 区与一个 Eden 区的比值为 2:8,一个 Survivor 区占整个年轻代的 1/10。调小这个参数将增大 survivor 区,让对象尽量在 survitor 区呆长一点,减少进入年老代的对象。去掉救助空间的想法是让大部分不能马上回收的数据尽快进入年老代,加快年老代的回收频率,减少年老代暴涨的可能性,这个是通过将-XX:SurvivorRatio 设置成比较大的值(比如 65536)来做到。-verbose:gc -Xloggc:$CATALINA_HOME/logs/gc.log将虚拟机每次垃圾回收的信息写到日志文件中,文件名由 file 指定,文件格式是平文件,内容和-verbose:gc 输出内容相同。-Djava.awt.headless=trueHeadless 模式是系统的一种配置模式。在该模式下,系统缺少了显示设备、键盘或鼠标。-XX:+PrintGCTimeStamps -XX:+PrintGCDetails设置 gc 日志的格式-Dsun.rmi.dgc.server.gcInterval=600000 -Dsun.rmi.dgc.client.gcInterval=600000指定 rmi 调用时 gc 的时间间隔-XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=15采用并发 gc 方式,经过 15 次 minor gc 后进入年老代
如何分析 GC 日志
Young GC 回收日志:
2016-07-05T10:43:18.093+0800: 25.395: [GC [PSYoungGen: 274931K->10738K(274944K)] 371093K->147186K(450048K), 0.0668480 secs] [Times: user=0.17 sys=0.08, real=0.07 secs]
Full GC 回收日志:
2016-07-05T10:43:18.160+0800: 25.462: [Full GC [PSYoungGen: 10738K->0K(274944K)] [ParOldGen: 136447K->140379K(302592K)] 147186K->140379K(577536K) [PSPermGen: 85411K->85376K(171008K)], 0.6763541 secs] [Times: user=1.75 sys=0.02, real=0.68 secs]
通过上面日志分析得出,PSYoungGen、ParOldGen、PSPermGen 属于 Parallel 收集器。其中 PSYoungGen 表示 gc 回收前后年轻代的内存变化;ParOldGen 表示 gc 回收前后老年代的内存变化;PSPermGen 表示 gc 回收前后永久区的内存变化。young gc 主要是针对年轻代进行内存回收比较频繁,耗时短;full gc 会对整个堆内存进行回城,耗时长,因此一般尽量减少 full gc 的次数
通过两张图非常明显看出 gc 日志构成:
OutOfMemory(OOM)分析
OutOfMemory ,即内存溢出,是一个常见的 JVM 问题。那么分析 OOM 的思路是什么呢?
首先,要知道有三种 OutOfMemoryError:
- OutOfMemoryError:Java heap space - 堆空间溢出
- OutOfMemoryError:PermGen space - 方法区和运行时常量池溢出
- OutOfMemoryError:unable to create new native thread - 线程过多
OutOfMemoryError:PermGen space
OutOfMemoryError:PermGen space 表示方法区和运行时常量池溢出。
原因:
Perm 区主要用于存放 Class 和 Meta 信息的,Class 在被 Loader 时就会被放到 PermGen space,这个区域称为年老代。GC 在主程序运行期间不会对年老区进行清理,默认是 64M 大小。
当程序程序中使用了大量的 jar 或 class,使 java 虚拟机装载类的空间不够,超过 64M 就会报这部分内存溢出了,需要加大内存分配,一般 128m 足够。
解决方案:
(1)扩大永久代空间
- JDK7 以前使用
-XX:PermSize和-XX:MaxPermSize来控制永久代大小。 - JDK8 以后把原本放在永久代的字符串常量池移出, 放在 Java 堆中(元空间 Metaspace)中,元数据并不在虚拟机中,使用的是本地的内存。使用
-XX:MetaspaceSize和-XX:MaxMetaspaceSize控制元空间大小。
注意:
-XX:PermSize一般设为 64M
(2)清理应用程序中 WEB-INF/lib 下的 jar,用不上的 jar 删除掉,多个应用公共的 jar 移动到 Tomcat 的 lib 目录,减少重复加载。
OutOfMemoryError:Java heap space
OutOfMemoryError:Java heap space 表示堆空间溢出。
原因:JVM 分配给堆内存的空间已经用满了。
问题定位
(1)使用 jmap 或 -XX:+HeapDumpOnOutOfMemoryError 获取堆快照。 (2)使用内存分析工具(visualvm、mat、jProfile 等)对堆快照文件进行分析。 (3)根据分析图,重点是确认内存中的对象是否是必要的,分清究竟是是内存泄漏(Memory Leak)还是内存溢出(Memory Overflow)。
内存泄露
内存泄漏是指由于疏忽或错误造成程序未能释放已经不再使用的内存的情况。
内存泄漏并非指内存在物理上的消失,而是应用程序分配某段内存后,由于设计错误,失去了对该段内存的控制,因而造成了内存的浪费。
内存泄漏随着被执行的次数越多-最终会导致内存溢出。
而因程序死循环导致的不断创建对象-只要被执行到就会产生内存溢出。
内存泄漏常见几个情况:
- 静态集合类
- 声明为静态(static)的 HashMap、Vector 等集合
- 通俗来讲 A 中有 B,当前只把 B 设置为空,A 没有设置为空,回收时 B 无法回收-因被 A 引用。
- 监听器
- 监听器被注册后释放对象时没有删除监听器
- 物理连接
- DataSource.getConnection()建立链接,必须通过 close()关闭链接
- 内部类和外部模块等的引用
- 发现它的方式同内存溢出,可再加个实时观察
- jstat -gcutil 7362 2500 70
重点关注:
- FGC — 从应用程序启动到采样时发生 Full GC 的次数。
- FGCT — 从应用程序启动到采样时 Full GC 所用的时间(单位秒)。
- FGC 次数越多,FGCT 所需时间越多-可非常有可能存在内存泄漏。
解决方案
(1)检查程序,看是否有死循环或不必要地重复创建大量对象。有则改之。
下面是一个重复创建内存的示例:
public class OOM {
public static void main(String[] args) {
Integer sum1=300000;
Integer sum2=400000;
OOM oom = new OOM();
System.out.println("往ArrayList中加入30w内容");
oom.javaHeapSpace(sum1);
oom.memoryTotal();
System.out.println("往ArrayList中加入40w内容");
oom.javaHeapSpace(sum2);
oom.memoryTotal();
}
public void javaHeapSpace(Integer sum){
Random random = new Random();
ArrayList openList = new ArrayList();
for(int i=0;i<sum;i++){
String charOrNum = String.valueOf(random.nextInt(10));
openList.add(charOrNum);
}
}
public void memoryTotal(){
Runtime run = Runtime.getRuntime();
long max = run.maxMemory();
long total = run.totalMemory();
long free = run.freeMemory();
long usable = max - total + free;
System.out.println("最大内存 = " + max);
System.out.println("已分配内存 = " + total);
System.out.println("已分配内存中的剩余空间 = " + free);
System.out.println("最大可用内存 = " + usable);
}
}
执行结果:
往ArrayList中加入30w内容
最大内存 = 20447232
已分配内存 = 20447232
已分配内存中的剩余空间 = 4032576
最大可用内存 = 4032576
往ArrayList中加入40w内容
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
at java.util.Arrays.copyOf(Arrays.java:2245)
at java.util.Arrays.copyOf(Arrays.java:2219)
at java.util.ArrayList.grow(ArrayList.java:242)
at java.util.ArrayList.ensureExplicitCapacity(ArrayList.java:216)
at java.util.ArrayList.ensureCapacityInternal(ArrayList.java:208)
at java.util.ArrayList.add(ArrayList.java:440)
at pers.qingqian.study.seven.OOM.javaHeapSpace(OOM.java:36)
at pers.qingqian.study.seven.OOM.main(OOM.java:26)
(2)扩大堆内存空间
使用 -Xms 和 -Xmx 来控制堆内存空间大小。
OutOfMemoryError: GC overhead limit exceeded
原因:JDK6 新增错误类型,当 GC 为释放很小空间占用大量时间时抛出;一般是因为堆太小,导致异常的原因,没有足够的内存。
解决方案:
查看系统是否有使用大内存的代码或死循环; 通过添加 JVM 配置,来限制使用内存:
<jvm-arg>-XX:-UseGCOverheadLimit</jvm-arg>
OutOfMemoryError:unable to create new native thread
原因:线程过多
那么能创建多少线程呢?这里有一个公式:
(MaxProcessMemory - JVMMemory - ReservedOsMemory) / (ThreadStackSize) = Number of threads
MaxProcessMemory 指的是一个进程的最大内存
JVMMemory JVM内存
ReservedOsMemory 保留的操作系统内存
ThreadStackSize 线程栈的大小
当发起一个线程的创建时,虚拟机会在 JVM 内存创建一个 Thread 对象同时创建一个操作系统线程,而这个系统线程的内存用的不是 JVMMemory,而是系统中剩下的内存: (MaxProcessMemory - JVMMemory - ReservedOsMemory) 结论:你给 JVM 内存越多,那么你能用来创建的系统线程的内存就会越少,越容易发生 java.lang.OutOfMemoryError: unable to create new native thread。
CPU 过高
定位步骤:
(1)执行 top -c 命令,找到 cpu 最高的进程的 id
(2)jstack PID 导出 Java 应用程序的线程堆栈信息。
示例:
jstack 6795
"Low Memory Detector" daemon prio=10 tid=0x081465f8 nid=0x7 runnable [0x00000000..0x00000000]
"CompilerThread0" daemon prio=10 tid=0x08143c58 nid=0x6 waiting on condition [0x00000000..0xfb5fd798]
"Signal Dispatcher" daemon prio=10 tid=0x08142f08 nid=0x5 waiting on condition [0x00000000..0x00000000]
"Finalizer" daemon prio=10 tid=0x08137ca0 nid=0x4 in Object.wait() [0xfbeed000..0xfbeeddb8]
at java.lang.Object.wait(Native Method)
- waiting on <0xef600848> (a java.lang.ref.ReferenceQueue$Lock)
at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:116)
- locked <0xef600848> (a java.lang.ref.ReferenceQueue$Lock)
at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:132)
at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:159)
"Reference Handler" daemon prio=10 tid=0x081370f0 nid=0x3 in Object.wait() [0xfbf4a000..0xfbf4aa38]
at java.lang.Object.wait(Native Method)
- waiting on <0xef600758> (a java.lang.ref.Reference$Lock)
at java.lang.Object.wait(Object.java:474)
at java.lang.ref.Reference$ReferenceHandler.run(Reference.java:116)
- locked <0xef600758> (a java.lang.ref.Reference$Lock)
"VM Thread" prio=10 tid=0x08134878 nid=0x2 runnable
"VM Periodic Task Thread" prio=10 tid=0x08147768 nid=0x8 waiting on condition
在打印的堆栈日志文件中,tid 和 nid 的含义:
nid : 对应的 Linux 操作系统下的 tid 线程号,也就是前面转化的 16 进制数字
tid: 这个应该是 jvm 的 jmm 内存规范中的唯一地址定位
在 CPU 过高的情况下,查找响应的线程,一般定位都是用 nid 来定位的。而如果发生死锁之类的问题,一般用 tid 来定位。
(3)定位 CPU 高的线程打印其 nid
查看线程下具体进程信息的命令如下:
top -H -p 6735
top - 14:20:09 up 611 days, 2:56, 1 user, load average: 13.19, 7.76, 7.82
Threads: 6991 total, 17 running, 6974 sleeping, 0 stopped, 0 zombie
%Cpu(s): 90.4 us, 2.1 sy, 0.0 ni, 7.0 id, 0.0 wa, 0.0 hi, 0.4 si, 0.0 st
KiB Mem: 32783044 total, 32505008 used, 278036 free, 120304 buffers
KiB Swap: 0 total, 0 used, 0 free. 4497428 cached Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
6800 root 20 0 27.299g 0.021t 7172 S 54.7 70.1 187:55.61 java
6803 root 20 0 27.299g 0.021t 7172 S 54.4 70.1 187:52.59 java
6798 root 20 0 27.299g 0.021t 7172 S 53.7 70.1 187:55.08 java
6801 root 20 0 27.299g 0.021t 7172 S 53.7 70.1 187:55.25 java
6797 root 20 0 27.299g 0.021t 7172 S 53.1 70.1 187:52.78 java
6804 root 20 0 27.299g 0.021t 7172 S 53.1 70.1 187:55.76 java
6802 root 20 0 27.299g 0.021t 7172 S 52.1 70.1 187:54.79 java
6799 root 20 0 27.299g 0.021t 7172 S 51.8 70.1 187:53.36 java
6807 root 20 0 27.299g 0.021t 7172 S 13.6 70.1 48:58.60 java
11014 root 20 0 27.299g 0.021t 7172 R 8.4 70.1 8:00.32 java
10642 root 20 0 27.299g 0.021t 7172 R 6.5 70.1 6:32.06 java
6808 root 20 0 27.299g 0.021t 7172 S 6.1 70.1 159:08.40 java
11315 root 20 0 27.299g 0.021t 7172 S 3.9 70.1 5:54.10 java
12545 root 20 0 27.299g 0.021t 7172 S 3.9 70.1 6:55.48 java
23353 root 20 0 27.299g 0.021t 7172 S 3.9 70.1 2:20.55 java
24868 root 20 0 27.299g 0.021t 7172 S 3.9 70.1 2:12.46 java
9146 root 20 0 27.299g 0.021t 7172 S 3.6 70.1 7:42.72 java
由此可以看出占用 CPU 较高的线程,但是这些还不高,无法直接定位到具体的类。nid 是 16 进制的,所以我们要获取线程的 16 进制 ID:
printf "%x\n" 6800
输出结果:45cd
然后根据输出结果到 jstack 打印的堆栈日志中查定位:
"catalina-exec-5692" daemon prio=10 tid=0x00007f3b05013800 nid=0x45cd waiting on condition [0x00007f3ae08e3000]
java.lang.Thread.State: TIMED_WAITING (parking)
at sun.misc.Unsafe.park(Native Method)
- parking to wait for <0x00000006a7800598> (a java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject)
at java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:226)
at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.awaitNanos(AbstractQueuedSynchronizer.java:2082)
at java.util.concurrent.LinkedBlockingQueue.poll(LinkedBlockingQueue.java:467)
at org.apache.tomcat.util.threads.TaskQueue.poll(TaskQueue.java:86)
at org.apache.tomcat.util.threads.TaskQueue.poll(TaskQueue.java:32)
at java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:1068)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1130)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run(TaskThread.java:61)
at java.lang.Thread.run(Thread.java:745)
程序执行缓慢
当CPU、内存、磁盘、网络都不高,程序还是执行缓慢的话,可能引发的原因大致有以下几种:
1程序锁竞争过于激烈,比如你只有2颗CPU,但是你启用了200个线程,就会导致大量的线程等待和切换,而这不会导致CPU很高,但是很多线程等待意味着你的程序运行很慢。
2未充分利用硬件资源。比如你的机器是16个核心的,但是你的程序是单线程运行的,即使你的程序优化的很好,当需要处理的资源比较多的时候,程序还会很慢,因此现在都在提倡分布式,通过大量廉价的PC机来提升程序的执行速度!
3其他服务器反应缓慢,如数据库、缓存等。当大量做了分布式,程序CPU负载都很低,但是提交给数据库的sql无法很快执行,也会特别慢。
总结一下,当出现性能问题的时候我们该怎么做?
一、CPU过高
1、 us过高
使用监控工具快读定位哪里有死循环,大计算,对于死循环通过阻塞式队列解决,对于大计算,建议分配单独的机器做后台计算,尽量不要影响用户交互,如果一定要的话(如框计算、云计算),只能通过大量分布式来实现
2、 sy过高
最有效的方法就是减少进程,不是进程越多效率越高,一般来说线程数和CPU的核心数相同,这样既不会造成线程切换,又不会浪费CPU资源
二、内存消耗过高
1、 及时释放不必要的对象
2、 使用对象缓存池缓冲
3、 采用合理的缓存失效算法(还记得我们之前提到的弱引用、幽灵引用么?)
三、磁盘IO过高
1、 异步读写文件
2、 批量读写文件
3、 使用缓存技术
4、 采用合理的文件读写规则
四、网络
1、增加宽带流量
五、资源消耗不多但程序运行缓慢
1、使用并发包,减少锁竞争
2、对于必须单线程执行的使用队列处理
3、大量分布式处理
六、未充分利用硬件资源
1、 修改程序代码,使用多线程处理
2、 修正外部资源瓶颈,做业务拆分
3、 使用缓存