淘汰机制
当内存使用超过Maxmemory时,可以通过配置淘汰机制保证Redis的可用性。
使用内存used_memory的计算方式:首先Redis运行期间申请的内存大小,然后在减去一部分不算入在内的内存(当前包括从库client-output-buffer和AOF buffer)。但其实这种计算方式得出的大小和存储用户数据的大小存在很大偏差。
不算入的占用内存的:从库client-output-buffer,计算存在很大误差,计算值比实际值小很多,导致used-memory和用户的数据大小差距较大,则会淘汰更多数据,从库越多越严重。这个问题在5.0上进行了修复https://github.com/redis/redis/pull/5126。 ( 还有一个问题是,即使达到client-output-buffer的限制,Redis还会继续往客户端buffer中写入,导致内存超过设置的到大小,如上截图,这个问题当前也已经修复了https://github.com/redis/redis/pull/7202 )
Redis一直存在将客户端使用的内存和主从复制backlog内存大小算进used_memory的问题,导致用户数据小于used_memory,也远小于maxmemory。这个问题尚未解决,不过社区也正在跟进 ****https://github.com/redis/redis/issues/7676。(注,我们有集群,由于主从复制backlog内存大小在不同分片上不一致,导致该值的较大的实例返回OOM错误,行为与其他实例不一致)
可选择的机制
- noeviction
- allkeys-lru
- allkeys-random
- volatile-random
- volatile-ttl
- volatile-lru
数据过期
过期信息的存储
typedef struct redisDb {
dict *dict; /* The keyspace for this DB */
dict *expires; /* Timeout of keys with a timeout set */
dict *blocking_keys; /* Keys with clients waiting for data (BLPOP)*/
dict *ready_keys; /* Blocked keys that received a PUSH */
dict *watched_keys; /* WATCHED keys for MULTI/EXEC CAS */
int id; /* Database ID */
long long avg_ttl; /* Average TTL, just for stats */
unsigned long expires_cursor; /* Cursor of the active expire cycle. */
list *defrag_later; /* List of key names to attempt to defrag one by one, gradually. */
} redisDb;
过期数据发现策略
惰性发现
Redis中数据操作的基础接口lookupKeyWriteWithFlags、lookupKeyReadWithFlags和delGenericCommand等函数中都会调用expireIfNeeded函数。
但是在使用expireIfNeeded上有些小区别。比如lookupKeyReadWithFlags依赖于expireIfNeeded的返回结果,而lookupKeyWriteWithFlags与delGenericCommand均不依赖,这主要是因为expireIfNeeded并不会过期从库上的数据。
/* This function is called when we are going to perform some operation
* in a given key, but such key may be already logically expired even if
* it still exists in the database. The main way this function is called
* is via lookupKey*() family of functions.
*
* The behavior of the function depends on the replication role of the
* instance, because slave instances do not expire keys, they wait
* for DELs from the master for consistency matters. However even
* slaves will try to have a coherent return value for the function,
* so that read commands executed in the slave side will be able to
* behave like if the key is expired even if still present (because the
* master has yet to propagate the DEL).
*
* In masters as a side effect of finding a key which is expired, such
* key will be evicted from the database. Also this may trigger the
* propagation of a DEL/UNLINK command in AOF / replication stream.
*
* The return value of the function is 0 if the key is still valid,
* otherwise the function returns 1 if the key is expired. */
int expireIfNeeded(redisDb *db, robj *key) {
if (!keyIsExpired(db,key)) return 0;
/* If we are running in the context of a slave, instead of
* evicting the expired key from the database, we return ASAP:
* the slave key expiration is controlled by the master that will
* send us synthesized DEL operations for expired keys.
*
* Still we try to return the right information to the caller,
* that is, 0 if we think the key should be still valid, 1 if
* we think the key is expired at this time. */
if (server.masterhost != NULL) return 1;
/* If clients are paused, we keep the current dataset constant,
* but return to the client what we believe is the right state. Typically,
* at the end of the pause we will properly expire the key OR we will
* have failed over and the new primary will send us the expire. */
if (checkClientPauseTimeoutAndReturnIfPaused()) return 1;
/* Delete the key */
if (server.lazyfree_lazy_expire) {
dbAsyncDelete(db,key);
} else {
dbSyncDelete(db,key);
}
server.stat_expiredkeys++;
propagateExpire(db,key,server.lazyfree_lazy_expire);
notifyKeyspaceEvent(NOTIFY_EXPIRED,
"expired",key,db->id);
signalModifiedKey(NULL,db,key);
return 1;
}
主动发现
Redis会在两个地方触发数据的主动过期, 分别是事件驱动处理事件前触发快速检查和时钟定期慢速检查。
快速检查
将过期检查负载一点点分摊到每个事件处理中。
int main(int argc, char **argv) {
...
aeSetBeforeSleepProc(server.el,beforeSleep);
...
aeMain(server.el);
...
}
void aeMain(aeEventLoop *eventLoop) {
eventLoop->stop = 0;
while (!eventLoop->stop) {
if (eventLoop->beforesleep != NULL)
eventLoop->beforesleep(eventLoop);
aeProcessEvents(eventLoop, AE_ALL_EVENTS|AE_CALL_AFTER_SLEEP);
}
}
void beforeSleep(struct aeEventLoop *eventLoop) {
...
if (server.active_expire_enabled && server.masterhost == NULL)
activeExpireCycle(ACTIVE_EXPIRE_CYCLE_FAST);
...
}
ACTIVE_EXPIRE_CYCLE_FAST,这种快速清理方式会运行不超过EXPIRE_FAST_CYCLE_DURATION毫秒对过期的key进行清理。Redis会在每次进入事件循环之前,调用这个类型类型的主动清理逻辑进行快速清理,同时保证在上一次快速清理之后EXPIRE_FAST_CYCLE_DURATION时间内,不会再次进行快速清理。
慢速检查
void initServer(void) {
...
// 创建时钟事件
if (aeCreateTimeEvent(server.el, 1, serverCron, NULL, NULL) == AE_ERR) {
serverPanic("Can't create event loop timers.");
exit(1);
}
...
}
int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) {
...
databasesCron();
...
}
// 主库中检查即可,主库会同步结果到从库。
void databasesCron(void) {
if (server.active_expire_enabled) {
if (server.masterhost == NULL) {
// 主库慢速检查
activeExpireCycle(ACTIVE_EXPIRE_CYCLE_SLOW);
} else {
// 从库如果设置了可写功能。
expireSlaveKeys();
}
}
...
}
ACTIVE_EXPIRE_CYCLE_SLOW,这种慢速清理方式是Redis中通用的普通清理模式,这种清理模式会在Redis的databasesCron中被调用,并且每次清理会占用一定百分比的REDIS_HZ时间,而这个百分比则是ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC定义的。
activeExpireCycle
www.jianshu.com/p/21f648579… mp.weixin.qq.com/s/D9Uc7K-bI…
/* Try to expire a few timed out keys. The algorithm used is adaptive and
* will use few CPU cycles if there are few expiring keys, otherwise
* it will get more aggressive to avoid that too much memory is used by
* keys that can be removed from the keyspace.
*
* Every expire cycle tests multiple databases: the next call will start
* again from the next db. No more than CRON_DBS_PER_CALL databases are
* tested at every iteration.
*
* The function can perform more or less work, depending on the "type"
* argument. It can execute a "fast cycle" or a "slow cycle". The slow
* cycle is the main way we collect expired cycles: this happens with
* the "server.hz" frequency (usually 10 hertz).
*
* However the slow cycle can exit for timeout, since it used too much time.
* For this reason the function is also invoked to perform a fast cycle
* at every event loop cycle, in the beforeSleep() function. The fast cycle
* will try to perform less work, but will do it much more often.
*
* The following are the details of the two expire cycles and their stop
* conditions:
*
* If type is ACTIVE_EXPIRE_CYCLE_FAST the function will try to run a
* "fast" expire cycle that takes no longer than ACTIVE_EXPIRE_CYCLE_FAST_DURATION
* microseconds, and is not repeated again before the same amount of time.
* The cycle will also refuse to run at all if the latest slow cycle did not
* terminate because of a time limit condition.
*
* If type is ACTIVE_EXPIRE_CYCLE_SLOW, that normal expire cycle is
* executed, where the time limit is a percentage of the REDIS_HZ period
* as specified by the ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC define. In the
* fast cycle, the check of every database is interrupted once the number
* of already expired keys in the database is estimated to be lower than
* a given percentage, in order to avoid doing too much work to gain too
* little memory.
*
* The configured expire "effort" will modify the baseline parameters in
* order to do more work in both the fast and slow expire cycles.
*/
#define ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP 20 /* Keys for each DB loop. */
#define ACTIVE_EXPIRE_CYCLE_FAST_DURATION 1000 /* Microseconds. */
#define ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC 25 /* Max % of CPU to use. */
#define ACTIVE_EXPIRE_CYCLE_ACCEPTABLE_STALE 10 /* % of stale keys after which
we do extra efforts. */
void activeExpireCycle(int type) {
/* Adjust the running parameters according to the configured expire
* effort. The default effort is 1, and the maximum configurable effort
* is 10. */
unsigned long
effort = server.active_expire_effort-1, /* Rescale from 0 to 9. */
config_keys_per_loop = ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP +
ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP/4*effort,
config_cycle_fast_duration = ACTIVE_EXPIRE_CYCLE_FAST_DURATION +
ACTIVE_EXPIRE_CYCLE_FAST_DURATION/4*effort,
config_cycle_slow_time_perc = ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC +
2*effort,
config_cycle_acceptable_stale = ACTIVE_EXPIRE_CYCLE_ACCEPTABLE_STALE-
effort;
/* This function has some global state in order to continue the work
* incrementally across calls. */
static unsigned int current_db = 0; /* Next DB to test. */
static int timelimit_exit = 0; /* Time limit hit in previous call? */
static long long last_fast_cycle = 0; /* When last fast cycle ran. */
int j, iteration = 0;
int dbs_per_call = CRON_DBS_PER_CALL;
long long start = ustime(), timelimit, elapsed;
/* When clients are paused the dataset should be static not just from the
* POV of clients not being able to write, but also from the POV of
* expires and evictions of keys not being performed. */
if (checkClientPauseTimeoutAndReturnIfPaused()) return;
if (type == ACTIVE_EXPIRE_CYCLE_FAST) {
/* Don't start a fast cycle if the previous cycle did not exit
* for time limit, unless the percentage of estimated stale keys is
* too high. Also never repeat a fast cycle for the same period
* as the fast cycle total duration itself. */
if (!timelimit_exit &&
server.stat_expired_stale_perc < config_cycle_acceptable_stale)
return;
if (start < last_fast_cycle + (long long)config_cycle_fast_duration*2)
return;
last_fast_cycle = start;
}
/* We usually should test CRON_DBS_PER_CALL per iteration, with
* two exceptions:
*
* 1) Don't test more DBs than we have.
* 2) If last time we hit the time limit, we want to scan all DBs
* in this iteration, as there is work to do in some DB and we don't want
* expired keys to use memory for too much time. */
if (dbs_per_call > server.dbnum || timelimit_exit)
dbs_per_call = server.dbnum;
/* We can use at max 'config_cycle_slow_time_perc' percentage of CPU
* time per iteration. Since this function gets called with a frequency of
* server.hz times per second, the following is the max amount of
* microseconds we can spend in this function. */
timelimit = config_cycle_slow_time_perc*1000000/server.hz/100;
timelimit_exit = 0;
if (timelimit <= 0) timelimit = 1;
if (type == ACTIVE_EXPIRE_CYCLE_FAST)
timelimit = config_cycle_fast_duration; /* in microseconds. */
/* Accumulate some global stats as we expire keys, to have some idea
* about the number of keys that are already logically expired, but still
* existing inside the database. */
long total_sampled = 0;
long total_expired = 0;
for (j = 0; j < dbs_per_call && timelimit_exit == 0; j++) {
/* Expired and checked in a single loop. */
unsigned long expired, sampled;
redisDb *db = server.db+(current_db % server.dbnum);
/* Increment the DB now so we are sure if we run out of time
* in the current DB we'll restart from the next. This allows to
* distribute the time evenly across DBs. */
current_db++;
/* Continue to expire if at the end of the cycle there are still
* a big percentage of keys to expire, compared to the number of keys
* we scanned. The percentage, stored in config_cycle_acceptable_stale
* is not fixed, but depends on the Redis configured "expire effort". */
do {
unsigned long num, slots;
long long now, ttl_sum;
int ttl_samples;
iteration++;
/* If there is nothing to expire try next DB ASAP. */
if ((num = dictSize(db->expires)) == 0) {
db->avg_ttl = 0;
break;
}
slots = dictSlots(db->expires);
now = mstime();
/* When there are less than 1% filled slots, sampling the key
* space is expensive, so stop here waiting for better times...
* The dictionary will be resized asap. */
if (slots > DICT_HT_INITIAL_SIZE &&
(num*100/slots < 1)) break;
/* The main collection cycle. Sample random keys among keys
* with an expire set, checking for expired ones. */
expired = 0;
sampled = 0;
ttl_sum = 0;
ttl_samples = 0;
if (num > config_keys_per_loop)
num = config_keys_per_loop;
/* Here we access the low level representation of the hash table
* for speed concerns: this makes this code coupled with dict.c,
* but it hardly changed in ten years.
*
* Note that certain places of the hash table may be empty,
* so we want also a stop condition about the number of
* buckets that we scanned. However scanning for free buckets
* is very fast: we are in the cache line scanning a sequential
* array of NULL pointers, so we can scan a lot more buckets
* than keys in the same time. */
long max_buckets = num*20;
long checked_buckets = 0;
while (sampled < num && checked_buckets < max_buckets) {
for (int table = 0; table < 2; table++) {
if (table == 1 && !dictIsRehashing(db->expires)) break;
unsigned long idx = db->expires_cursor;
idx &= db->expires->ht[table].sizemask;
dictEntry *de = db->expires->ht[table].table[idx];
long long ttl;
/* Scan the current bucket of the current table. */
checked_buckets++;
while(de) {
/* Get the next entry now since this entry may get
* deleted. */
dictEntry *e = de;
de = de->next;
ttl = dictGetSignedIntegerVal(e)-now;
if (activeExpireCycleTryExpire(db,e,now)) expired++;
if (ttl > 0) {
/* We want the average TTL of keys yet
* not expired. */
ttl_sum += ttl;
ttl_samples++;
}
sampled++;
}
}
db->expires_cursor++;
}
total_expired += expired;
total_sampled += sampled;
/* Update the average TTL stats for this database. */
if (ttl_samples) {
long long avg_ttl = ttl_sum/ttl_samples;
/* Do a simple running average with a few samples.
* We just use the current estimate with a weight of 2%
* and the previous estimate with a weight of 98%. */
if (db->avg_ttl == 0) db->avg_ttl = avg_ttl;
db->avg_ttl = (db->avg_ttl/50)*49 + (avg_ttl/50);
}
/* We can't block forever here even if there are many keys to
* expire. So after a given amount of milliseconds return to the
* caller waiting for the other active expire cycle. */
if ((iteration & 0xf) == 0) { /* check once every 16 iterations. */
elapsed = ustime()-start;
if (elapsed > timelimit) {
timelimit_exit = 1;
server.stat_expired_time_cap_reached_count++;
break;
}
}
/* We don't repeat the cycle for the current database if there are
* an acceptable amount of stale keys (logically expired but yet
* not reclaimed). */
} while (sampled == 0 ||
(expired*100/sampled) > config_cycle_acceptable_stale);
}
elapsed = ustime()-start;
server.stat_expire_cycle_time_used += elapsed;
latencyAddSampleIfNeeded("expire-cycle",elapsed/1000);
/* Update our estimate of keys existing but yet to be expired.
* Running average with this sample accounting for 5%. */
double current_perc;
if (total_sampled) {
current_perc = (double)total_expired/total_sampled;
} else
current_perc = 0;
server.stat_expired_stale_perc = (current_perc*0.05)+
(server.stat_expired_stale_perc*0.95);
}
从库数据过期
对于主服务器,一个过期的键被删除了后,会向从服务器发送 DEL 命令,通知从服务器删除对应的键。
从服务器接收到读取一个键的命令时,即使这个键已经过期,也不会删除,但是会报key不存在的错误。
从服务器接收到主服务器的 DEL 命令后,才会删除对应的过期键。 一旦 slave 被提升 master ,它将开始独立过期 key,而不需要任何旧 master 帮助。
RDB
RDB生成时,如果一个键已经过期,也会被保存到RDB文件中。
RDB载入时,如果 Redis 以主服务器的模式运行,那么会对 RDB 中的键进行时间检查,过期的键不会被恢复到 Redis 中。 如果 Redis 以从服务器的模式运行,那么 RDB 中所有的键都会被载入,忽略时间检查。在从服务器与主服务器进行数据同步的时候,从服务器的数据会先被清空,所以载入过期键不会有问题。
数据删除
除了客户端显示删除数据,当数据淘汰或者过期时,需要对数据进行删除。
方式
删除数据的方式分为同步删除和异步删除,同步删除为Redis主线程直接删除数据,在遇到大key时可能阻塞客户端请求。异步删除是通过BIO的方式删除数据。
同步删除
/* Delete a key, value, and associated expiration entry if any, from the DB */
int dbSyncDelete(redisDb *db, robj *key) {
/* Deleting an entry from the expires dict will not free the sds of
* the key, because it is shared with the main dictionary. */
if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr);
dictEntry *de = dictUnlink(db->dict,key->ptr);
if (de) {
robj *val = dictGetVal(de);
/* Tells the module that the key has been unlinked from the database. */
moduleNotifyKeyUnlink(key,val);
dictFreeUnlinkedEntry(db->dict,de);
if (server.cluster_enabled) slotToKeyDel(key->ptr);
return 1;
} else {
return 0;
}
}
异步删除
/* Delete a key, value, and associated expiration entry if any, from the DB.
* If there are enough allocations to free the value object may be put into
* a lazy free list instead of being freed synchronously. The lazy free list
* will be reclaimed in a different bio.c thread. */
#define LAZYFREE_THRESHOLD 64
int dbAsyncDelete(redisDb *db, robj *key) {
/* Deleting an entry from the expires dict will not free the sds of
* the key, because it is shared with the main dictionary. */
if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr);
/* If the value is composed of a few allocations, to free in a lazy way
* is actually just slower... So under a certain limit we just free
* the object synchronously. */
dictEntry *de = dictUnlink(db->dict,key->ptr);
if (de) {
robj *val = dictGetVal(de);
/* Tells the module that the key has been unlinked from the database. */
moduleNotifyKeyUnlink(key,val);
size_t free_effort = lazyfreeGetFreeEffort(key,val);
/* If releasing the object is too much work, do it in the background
* by adding the object to the lazy free list.
* Note that if the object is shared, to reclaim it now it is not
* possible. This rarely happens, however sometimes the implementation
* of parts of the Redis core may call incrRefCount() to protect
* objects, and then call dbDelete(). In this case we'll fall
* through and reach the dictFreeUnlinkedEntry() call, that will be
* equivalent to just calling decrRefCount(). */
if (free_effort > LAZYFREE_THRESHOLD && val->refcount == 1) {
atomicIncr(lazyfree_objects,1);
bioCreateLazyFreeJob(lazyfreeFreeObject,1, val);
dictSetVal(db->dict,de,NULL);
}
}
/* Release the key-val pair, or just the key if we set the val
* field to NULL in order to lazy free it later. */
if (de) {
dictFreeUnlinkedEntry(db->dict,de);
if (server.cluster_enabled) slotToKeyDel(key->ptr);
return 1;
} else {
return 0;
}
}
命令显示指定
异步删除也可以通过客户端显示指定,比如flushdb async,unlink等。
配置后台触发
lazyfree-lazy-eviction no
lazyfree-lazy-expire no
lazyfree-lazy-server-del no
replica-lazy-flush no
数据空间释放
因为redis的数据空间是通过jemalloc申请的,数据的删除不会直接释放给操作系统。当数据删除后,释放的内存空间由Redis自己的内存分配器管理,并没有立即将内存返回给操作系统,所以对于操作系统而言,仍然认为Redis占用了内存。
这样的好处是,减少Redis向系统申请内存分配的次数,提升Redis自身性能。 juejin.cn/post/684490…
4、6系区别