HashTable HashMap TreeMap
-
HashTable 同步,不支持null键和值,性能开销比较大
-
HashMap
不同步,支持null键和值,数组+链表实现
- TreeMap 红黑树实现,有顺序的map
HashMap源码分析
Node,存放hash,key,value,next
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
...
}
table
transient Node<K,V>[] table;
hash值计算:
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
hash索引计算:
p = tab[i = (n - 1) & hash]
put操作
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
/**
* Implements Map.put and related methods
*
* @param hash key
* @param key
* @param value
* @param onlyIfAbsent true如果值已经存在则不改变
* @param evict fasle table处于创造模式
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// hash table为空,设置默认大小
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 如果计算得到的下标对应的值为空,直接以此创建新的节点
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
// 第一个Node的hash和key值和插入的一致,直接取出
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
// 链表已经转换成了树
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
// hash值不一致,遍历链表,如果为空,则插入
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// 判断链表最大长度是否已经达到红黑树标准,是则将链表转换为树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 存在key
if (e != null) { // existing mapping for key
V oldValue = e.value;
// 如果需要更新旧的值
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount; // HashMap被修改的次数
// key-map数量大于阈值,扩容,初始threshold=16,
if (++size > threshold)
resize();
// 插入回调
afterNodeInsertion(evict);
return null;
}
get操作
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
table不为空&& 链表第一个值不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 第一个节点hash,key一致
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 第一个节点的next不为空
if ((e = first.next) != null) {
// LinkedHashMap
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// 遍历链表取值
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
Resize操作
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
// 当前hash桶容量
int oldCap = (oldTab == null) ? 0 : oldTab.length;
// 当前key-map阈值
int oldThr = threshold;
// 新的容量,新的阈值
int newCap, newThr = 0;
// 老的table的容量大于0
if (oldCap > 0) {
// 大于默认最大容量
if (oldCap >= MAXIMUM_CAPACITY) {
// 容量阈值设置为2^31-1
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 新的容量为旧的容量的2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
// 阈值也设置为两倍
newThr = oldThr << 1; // double threshold
}
// 旧的阈值大于0,标示已经出初始化过了,直接设置新的容量为旧的阈值
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
// 否则初始化容量和阈值
newCap = DEFAULT_INITIAL_CAPACITY;
// 初始阈值=加载因子*初始容量
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 如果新的阈值==0
if (newThr == 0) {
// 重新计算阈值
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
// 创建新的hash桶
table = newTab;
// 写入原来的数据
if (oldTab != null) {
// 遍历旧的hash桶
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
// 如果对应的链表不为空
if ((e = oldTab[j]) != null) {
// 将旧的链表置空
oldTab[j] = null;
// 如果链表只有一个元素
if (e.next == null)
// 直接丢入新的hash桶中,索引为hash & (新的hash桶容量-1)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
// 链表已经转换成了树
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
// 低位头节点,低位尾节点
Node<K,V> loHead = null, loTail = null;
// 高位头节点,高位尾节点
Node<K,V> hiHead = null, hiTail = null;
// 临时节点
Node<K,V> next;
do {
next = e.next;
// 应该存放在低位
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
// 存放在高位
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 低位节点赋值
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 高位节点赋值
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}