iOS 底层原理:block 分析下(底层源码分析)

966 阅读9分钟

前言

本篇将会介绍block的类型、循环引用和一些相关的面试题,并在下一篇文章对这些上层表现用底层源码进行验证和分析。

准备

一、clang 分析 block

基本变量 clang分析

main.m中创建mMain函数:

int mMain(void);

int main(int argc, const char * argv[]) {
    @autoreleasepool {
        return mMain();
    }
    return NSApplicationMain(argc, argv);
}

int mMain(void) {
    int a = 18;
    void(^block)(void) = ^{
        printf("ssl - %d",a);
    };
    block();
    
    return 0;
}

通过命令clang -rewrite-objc main.m -o main.cpp得到main.cpp文件,查看相关函数:

int mMain(void) {
    int a = 18;
    void(*block)(void) = __mMain_block_impl_0(__mMain_block_func_0, &__mMain_block_desc_0_DATA, a));
    block->FuncPtr(block);

    return 0;
}

struct __mMain_block_impl_0 {
  struct __block_impl impl;
  struct __mMain_block_desc_0* Desc;
  int a;
  __mMain_block_impl_0(void *fp, struct __mMain_block_desc_0 *desc, int _a, int flags=0) : a(_a) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
  • mMain函数中调用了__mMain_block_impl_0
  • __mMain_block_impl_0是个结构体,有一个int a成员变量,有个构造函数,其中a(_a)是对a成员变量进行了赋值操作。
  • impl.isa = &_NSConcreteStackBlock;,可以看到这里是一个栈block,而在我们的理解里,这应该是堆block才对,下面会进行分析。
  • fpmMain中的__mMain_block_func_0,将它赋值给了FuncPtr,而最终block的调用就是调用了FuncPtr也就是__mMain_block_func_0

查看__mMain_block_func_0

static void __mMain_block_func_0(struct __mMain_block_impl_0 *__cself) {
    int a = __cself->a; // bound by copy
    printf("ssl - %d",a);
}
  • __cself就是__mMain_block_impl_0结构体。
  • 这里的a和外面的a不是一个值,所以修改会报错。

__block修饰的基本变量 clang分析

修改下代码,用__block修饰a

int mMain(void) {
    __block int a = 18;
    void(^block)(void) = ^{
        printf("ssl - %d",a);
    };
    block();
    
    return 0;
}

还是通过clang -rewrite-objc main.m -o main.cpp命令得到main.cpp文件,查看相关函数:

int mMain(void) {
    __Block_byref_a_0 a = {
        (void*)0,
        (__Block_byref_a_0 *)&a,
        0,
        sizeof(__Block_byref_a_0), 
        18}; // 结构体的初始化
    void(*block)(void) = __mMain_block_impl_0(__mMain_block_func_0, &__mMain_block_desc_0_DATA, (__Block_byref_a_0 *)&a, 570425344));
    block->FuncPtr(block);

    return 0;
}

struct __mMain_block_impl_0 {
  struct __block_impl impl;
  struct __mMain_block_desc_0* Desc;
  __Block_byref_a_0 *a; // by ref
  __mMain_block_impl_0(void *fp, struct __mMain_block_desc_0 *desc, __Block_byref_a_0 *_a, int flags=0) : a(_a->__forwarding) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};

struct __Block_byref_a_0 {
  void *__isa;
__Block_byref_a_0 *__forwarding;
 int __flags;
 int __size;
 int a;
};

static void __mMain_block_func_0(struct __mMain_block_impl_0 *__cself) {
    __Block_byref_a_0 *a = __cself->a; // bound by ref
    printf("ssl - %d",(a->__forwarding->a));
}
  • 可以看到变量a在这里被编译成了__Block_byref_a_0结构体,初始化时将&a赋值给了__forwarding,也就是将自己的地址赋值给了自身的__forwarding
  • 调用__mMain_block_impl_0的构造函数时,又将__forwarding赋值给了__mMain_block_impl_0的成员变量a
  • 所以调用__mMain_block_func_0函数时,__cself->a和外部的a是指向同一内存地址的,可以进行修改。

二、block汇编分析 签名、copy过程

汇编分析 得到底层调用和库

创建一个NSObject对象在block中进行打印,通过汇编调试找到block第一个调用的函数objc_retainBlock

image.png

objc_retainBlock符号断点,得到下一调用函数_Block_copy

image.png

_Block_copy符号断点,得到libsystem_blocks.dylib库:

image.png

_Block_copy是在libsystem_blocks库中的,但是libsystem_blocks库并没有开源,可以通过反汇编来找到源码,也可以通过替代工程 libclosure 79 进行分析,我们接下来通过替代工程来进行分析。

_Block_copy 源码分析

进入_Block_copy函数:

// Copy, or bump refcount, of a block.  If really copying, call the copy helper if present.
void *_Block_copy(const void *arg) {
    struct Block_layout *aBlock;

    if (!arg) return NULL;
    
    // The following would be better done as a switch statement
    aBlock = (struct Block_layout *)arg;
    // 如果是释放状态,直接返回
    if (aBlock->flags & BLOCK_NEEDS_FREE) {
        // latches on high
        latching_incr_int(&aBlock->flags);
        return aBlock;
    }
    
    // 如果是 全局block 直接返回
    else if (aBlock->flags & BLOCK_IS_GLOBAL) {
        return aBlock;
    }
    else { // 编译期过来生成的是栈block
        // Its a stack block.  Make a copy. 计算所需空间大小
        size_t size = Block_size(aBlock);
        // 开辟新的空间 创建block
        struct Block_layout *result = (struct Block_layout *)malloc(size);
        if (!result) return NULL;
        // 下面进行各种拷贝
        memmove(result, aBlock, size); // bitcopy first
#if __has_feature(ptrauth_calls)
        // Resign the invoke pointer as it uses address authentication.
        result->invoke = aBlock->invoke;

#if __has_feature(ptrauth_signed_block_descriptors)
        if (aBlock->flags & BLOCK_SMALL_DESCRIPTOR) {
            uintptr_t oldDesc = ptrauth_blend_discriminator(
                    &aBlock->descriptor,
                    _Block_descriptor_ptrauth_discriminator);
            uintptr_t newDesc = ptrauth_blend_discriminator(
                    &result->descriptor,
                    _Block_descriptor_ptrauth_discriminator);
            // descriptor 的拷贝
            result->descriptor =
                    ptrauth_auth_and_resign(aBlock->descriptor,
                                            ptrauth_key_asda, oldDesc,
                                            ptrauth_key_asda, newDesc);
        }
#endif
#endif
        // reset refcount
        result->flags &= ~(BLOCK_REFCOUNT_MASK|BLOCK_DEALLOCATING);    // XXX not needed
        result->flags |= BLOCK_NEEDS_FREE | 2;  // logical refcount 1
        _Block_call_copy_helper(result, aBlock);
        // isa 标记为 MallocBlock
        result->isa = _NSConcreteMallocBlock;
        return result;
    }
}
  • block的本质是Block_layout结构体。
  • 函数传过来的是栈block时,会重新开辟一个堆block,再将栈block相关的值拷贝到堆上。

查看Block_layout:

struct Block_layout {
    void * __ptrauth_objc_isa_pointer isa; // 指向哪儿种block,栈/堆/全局
    volatile int32_t flags; // contains ref count 是否正在析构、是否有签名等信息
    int32_t reserved;
    BlockInvokeFunction invoke; // 调用函数
    struct Block_descriptor_1 *descriptor; // 其他一些描述信息
    // imported variables
};

查看flags值:

// Values for Block_layout->flags to describe block objects
enum {
    BLOCK_DEALLOCATING =      (0x0001),  // runtime 是否正在析构
    BLOCK_REFCOUNT_MASK =     (0xfffe),  // runtime 引用计数掩码
    BLOCK_INLINE_LAYOUT_STRING = (1 << 21), // compiler

#if BLOCK_SMALL_DESCRIPTOR_SUPPORTED
    BLOCK_SMALL_DESCRIPTOR =  (1 << 22), // compiler
#endif

    BLOCK_IS_NOESCAPE =       (1 << 23), // compiler
    BLOCK_NEEDS_FREE =        (1 << 24), // runtime 是否释放状态
    BLOCK_HAS_COPY_DISPOSE =  (1 << 25), // compiler 是否有copy、dispose函数
    BLOCK_HAS_CTOR =          (1 << 26), // compiler: helpers have C++ code
    BLOCK_IS_GC =             (1 << 27), // runtime
    BLOCK_IS_GLOBAL =         (1 << 28), // compiler 是否全局block
    BLOCK_USE_STRET =         (1 << 29), // compiler: undefined if !BLOCK_HAS_SIGNATURE
    BLOCK_HAS_SIGNATURE  =    (1 << 30), // compiler 是否有签名
    BLOCK_HAS_EXTENDED_LAYOUT=(1 << 31)  // compiler
};

汇编分析 签名、copy 过程

_Block_copy符号断点,通过寄存器打印block

image.png

  • 可以看到这时的block还是StackBlock

汇编跟流程,走到最底部,再次通过寄存器打印block

image.png

  • 可以看到StackBlock变成了MallocBlockblock的地址也不一样了。
  • signaturev8@?0(返回值是void,占8个字节,@?类型,从0号位置开始)。
  • invoke:函数调用者,copydispose下面将进行分析。

通过NSMethodSignature获取signature的详细信息:

(lldb) po [NSMethodSignature signatureWithObjCTypes:"v8@?0"]
<NSMethodSignature: 0xb91f68c7625b0cf7>
    number of arguments = 1 // 传了一个参数
    frame size = 224
    is special struct return? NO // 没有返回值
    return value: -------- -------- -------- --------
        type encoding (v) 'v'
        flags {}
        modifiers {}
        frame {offset = 0, offset adjust = 0, size = 0, size adjust = 0}
        memory {offset = 0, size = 0}
    argument 0: -------- -------- -------- -------- // 参数从0号位置开始
        type encoding (@) '@?' // 类型是@?
        flags {isObject, isBlock} // 是对象 是block
        modifiers {}
        frame {offset = 0, offset adjust = 0, size = 8, size adjust = 0} // 0号位置开始大小为8
        memory {offset = 0, size = 8}
(lldb)  

三、Block_layout 的结构

查看Block_layout及相关descriptor结构:

struct Block_layout {
    void * __ptrauth_objc_isa_pointer isa; // 指向哪儿种block,栈/堆/全局
    volatile int32_t flags; // contains ref count 是否正在析构、是否有签名等信息
    int32_t reserved;
    BlockInvokeFunction invoke; // 调用函数
    struct Block_descriptor_1 *descriptor; // 其他一些描述信息
    // imported variables
};

#define BLOCK_DESCRIPTOR_1 1
struct Block_descriptor_1 {
    uintptr_t reserved;
    uintptr_t size;
};

#define BLOCK_DESCRIPTOR_2 1
struct Block_descriptor_2 {
    // requires BLOCK_HAS_COPY_DISPOSE
    BlockCopyFunction copy;
    BlockDisposeFunction dispose;
};

#define BLOCK_DESCRIPTOR_3 1
struct Block_descriptor_3 {
    // requires BLOCK_HAS_SIGNATURE
    const char *signature;
    const char *layout;     // contents depend on BLOCK_HAS_EXTENDED_LAYOUT
};
  • 这里的Block_descriptor_2Block_descriptor_3是可选的,可能有也可能没有,接下来通过它们的get函数来进行分析。

通过搜索查询,找到_Block_descriptor_2_Block_descriptor_3函数:

static struct Block_descriptor_2 * _Block_descriptor_2(struct Block_layout *aBlock)
{
    uint8_t *desc = (uint8_t *)_Block_get_descriptor(aBlock);
    desc += sizeof(struct Block_descriptor_1);
    return (struct Block_descriptor_2 *)desc;
}

static struct Block_descriptor_3 * _Block_descriptor_3(struct Block_layout *aBlock)
{
    uint8_t *desc = (uint8_t *)_Block_get_descriptor(aBlock);
    desc += sizeof(struct Block_descriptor_1);
    if (aBlock->flags & BLOCK_HAS_COPY_DISPOSE) {
        desc += sizeof(struct Block_descriptor_2);
    }
    return (struct Block_descriptor_3 *)desc;
}
  • Block_descriptor_2是通过block平移Block_descriptor_1的大小得到的。
  • 如果有copydispose函数,block先平移Block_descriptor_1的大小得到Block_descriptor_2Block_descriptor_2再平移自身大小得到Block_descriptor_3
  • 如果没有copydispose函数,Block_descriptor_3则通过block平移Block_descriptor_1的大小直接得到。

回到汇编调试,lldb 打印验证

image.png

  • 0x00000001048f0010Block_descriptor_2的地址,它的第32字节处0x00000001048ef3e3Block_descriptor_3的第一个成员变量signature,打印出了它的值v8@?0

四、__block 的捕获变量生命周期

block内打印__block修饰的NSObject对象:

int mMain(void) {
    __block NSObject *obj = [NSObject new];
    void(^block)(void) = ^{
        NSLog(@"ssl - %@",obj);
    };
    block();
    
    return 0;
}

通过clang -rewrite-objc main.m -o main.cpp命令得到main.cpp文件,查看相关函数:

int mMain(void) {
    __Block_byref_obj_0 obj = {
        (void*)0,(__Block_byref_obj_0 *)&obj,
        33554432,
        sizeof(__Block_byref_obj_0),
        __Block_byref_id_object_copy_131,
        __Block_byref_id_object_dispose_131,
        objc_msgSend((id)objc_getClass("NSObject"), sel_registerName("new"))
    };
    void(*block)(void) = __mMain_block_impl_0(__mMain_block_func_0, &__mMain_block_desc_0_DATA, (__Block_byref_obj_0 *)&obj, 570425344));
    block->FuncPtr(block);

    return 0;
}

struct __mMain_block_impl_0 {
    struct __block_impl impl;
    struct __mMain_block_desc_0* Desc;
    __Block_byref_obj_0 *obj; // by ref
    __mMain_block_impl_0(void *fp, struct __mMain_block_desc_0 *desc, __Block_byref_obj_0 *_obj, int flags=0) : obj(_obj->__forwarding) {
        impl.isa = &_NSConcreteStackBlock;
        impl.Flags = flags;
        impl.FuncPtr = fp;
        Desc = desc;
    }
};

struct __block_impl {
  void *isa;
  int Flags;
  int Reserved;
  void *FuncPtr;
};

struct __Block_byref_obj_0 {
    void *__isa;
    __Block_byref_obj_0 *__forwarding;
    int __flags;
    int __size;
    void (*__Block_byref_id_object_copy)(void*, void*);
    void (*__Block_byref_id_object_dispose)(void*);
    NSObject *obj;
};

static void __mMain_block_func_0(struct __mMain_block_impl_0 *__cself) {
    __Block_byref_obj_0 *obj = __cself->obj; // bound by ref
    NSLog((NSString *)&__NSConstantStringImpl__var_folders_tb_rpsdqw797gn7n3l8myk82s5w0000gn_T_main_35fc7e_mi_0,(obj->__forwarding->obj));
}

捕获变量 Block_byref 拷贝分析

查看__mMain_block_desc_0相关函数:

static struct __mMain_block_desc_0 {
  size_t reserved;
  size_t Block_size;
  void (*copy)(struct __mMain_block_impl_0*, struct __mMain_block_impl_0*);
  void (*dispose)(struct __mMain_block_impl_0*);
} __mMain_block_desc_0_DATA = { 0,
                                sizeof(struct __mMain_block_impl_0),
                                __mMain_block_copy_0,
                                __mMain_block_dispose_0};

static void __mMain_block_copy_0(struct __mMain_block_impl_0*dst, struct __mMain_block_impl_0*src) {
    _Block_object_assign((void*)&dst->obj, (void*)src->obj, 8/*BLOCK_FIELD_IS_BYREF*/);
}

static void __mMain_block_dispose_0(struct __mMain_block_impl_0*src) {
    _Block_object_dispose((void*)src->obj, 8/*BLOCK_FIELD_IS_BYREF*/);
}
  • copydispose是上面我们提到的Block_descriptor_2中的成员变量,这里被赋值为__mMain_block_copy_0函数和__mMain_block_dispose_0函数,__mMain_block_copy_0中调用了_Block_object_assign函数。
  • _Block_object_assign的第一个参数&dst->obj是堆中的__Block_byref_obj_0
  • _Block_object_assign的第二个参数src->obj是栈中的__Block_byref_obj_0
  • _Block_object_assign函数的第三个传参是8也就是BLOCK_FIELD_IS_BYREF类型。
    enum {
        // see function implementation for a more complete description of these fields and combinations
        BLOCK_FIELD_IS_OBJECT   =  3,  // id, NSObject, __attribute__((NSObject)), block, ...
        BLOCK_FIELD_IS_BLOCK    =  7,  // a block variable
        BLOCK_FIELD_IS_BYREF    =  8,  // the on stack structure holding the __block variable
        BLOCK_FIELD_IS_WEAK     = 16,  // declared __weak, only used in byref copy helpers
        BLOCK_BYREF_CALLER      = 128, // called from __block (byref) copy/dispose support routines.
    };
    

源码中搜索_Block_object_assign函数:

void _Block_object_assign(void *destArg, const void *object, const int flags) {
    const void **dest = (const void **)destArg;
    switch (os_assumes(flags & BLOCK_ALL_COPY_DISPOSE_FLAGS)) {
        // 普通的对象类型
        case BLOCK_FIELD_IS_OBJECT:
            /*******
            id object = ...;
            [^{ object; } copy];
            ********/

            // 没有操作,交给了系统级的arc处理 _Block_retain_object_default = fn (arc)
            _Block_retain_object(object);
            // 栈block中object 赋值给堆block中object
            *dest = object;
            break;
        // __block 修饰类型
        case BLOCK_FIELD_IS_BLOCK:
            /*******
            void (^object)(void) = ...;
            [^{ object; } copy];
            ********/

            *dest = _Block_copy(object);
            break;
    
        case BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK:
        case BLOCK_FIELD_IS_BYREF: // 8
            /*******
             // copy the onstack __block container to the heap
             // Note this __weak is old GC-weak/MRC-unretained.
             // ARC-style __weak is handled by the copy helper directly.
             __block ... x;
             __weak __block ... x;
             [^{ x; } copy];
             ********/
            // 这里的object是__Block_byref_obj_0
            *dest = _Block_byref_copy(object);
            break;
        case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
        case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
            /*******
             // copy the actual field held in the __block container
             // Note this is MRC unretained __block only. 
             // ARC retained __block is handled by the copy helper directly.
             __block id object;
             __block void (^object)(void);
             [^{ object; } copy];
             ********/

            *dest = object;
            break;

        case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK:
        case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK  | BLOCK_FIELD_IS_WEAK:
            /*******
             // copy the actual field held in the __block container
             // Note this __weak is old GC-weak/MRC-unretained.
             // ARC-style __weak is handled by the copy helper directly.
             __weak __block id object;
             __weak __block void (^object)(void);
             [^{ object; } copy];
             ********/

            *dest = object;
            break;
    
        default:
            break;
    }
}
  • flagsBLOCK_FIELD_IS_BYREF类型,所以调用的是_Block_byref_copy函数,传入的object上面已经说过是栈中的__Block_byref_obj_0

进入_Block_byref_copy

static struct Block_byref *_Block_byref_copy(const void *arg) {
    // 强转为Block_byref类型
    struct Block_byref *src = (struct Block_byref *)arg;
    
    if ((src->forwarding->flags & BLOCK_REFCOUNT_MASK) == 0) {
        // 在堆上重新开辟内存,创建变量copy
        struct Block_byref *copy = (struct Block_byref *)malloc(src->size);
        // 接下来进行相关拷贝操作
        copy->isa = NULL;
        // byref value 4 is logical refcount of 2: one for caller, one for stack
        copy->flags = src->flags | BLOCK_BYREF_NEEDS_FREE | 4;
        copy->forwarding = copy; // patch heap copy to point to itself
        src->forwarding = copy;  // patch stack to point to heap copy
        copy->size = src->size;
        
        
        if (src->flags & BLOCK_BYREF_HAS_COPY_DISPOSE) {
            // Trust copy helper to copy everything of interest
            // If more than one field shows up in a byref block this is wrong XXX
            struct Block_byref_2 *src2 = (struct Block_byref_2 *)(src+1);
            struct Block_byref_2 *copy2 = (struct Block_byref_2 *)(copy+1);
            copy2->byref_keep = src2->byref_keep;
            copy2->byref_destroy = src2->byref_destroy;

            if (src->flags & BLOCK_BYREF_LAYOUT_EXTENDED) {
                struct Block_byref_3 *src3 = (struct Block_byref_3 *)(src2+1);
                struct Block_byref_3 *copy3 = (struct Block_byref_3*)(copy2+1);
                copy3->layout = src3->layout;
            }

            // 捕获到了外界的变量 - 内存处理 - 生命周期的保存
            (*src2->byref_keep)(copy, src);
        }
        else {
            // Bitwise copy.
            // This copy includes Block_byref_3, if any.
            memmove(copy+1, src+1, src->size - sizeof(*src));
        }
    }
    // already copied to heap
    else if ((src->forwarding->flags & BLOCK_BYREF_NEEDS_FREE) == BLOCK_BYREF_NEEDS_FREE) {
        latching_incr_int(&src->forwarding->flags);
    }
    
    return src->forwarding;
}
  • 在堆上重新开辟Block_byref结构内存,将栈上Block_byref的值都拷贝过来,而且栈和堆上的forwarding都指向了这片内存空间。
  • 拷贝等操作完成以后,调用了byref_keep函数,这个函数是调用了啥呢。

Block_byref 中的 object 拷贝分析

先源码看下Block_byref相关结构:

// 结构体
struct Block_byref {
    void * __ptrauth_objc_isa_pointer isa; // 8
    struct Block_byref *forwarding;  // 8
    volatile int32_t flags; // contains ref count//4
    uint32_t size; // 4
};

struct Block_byref_2 {
    // requires BLOCK_BYREF_HAS_COPY_DISPOSE  
    BlockByrefKeepFunction byref_keep; // 8
    BlockByrefDestroyFunction byref_destroy; // 8
};

struct Block_byref_3 {
    // requires BLOCK_BYREF_LAYOUT_EXTENDED
    const char *layout;
};

size成员变量下面是byref_keep变量,再结合clang编译代码看一下:

int mMain(void) {
    __Block_byref_obj_0 obj = {
        (void*)0,(__Block_byref_obj_0 *)&obj,
        33554432,
        sizeof(__Block_byref_obj_0),
        __Block_byref_id_object_copy_131,
        __Block_byref_id_object_dispose_131,
        objc_msgSend((id)objc_getClass("NSObject"), sel_registerName("new"))
    };
    void(*block)(void) = __mMain_block_impl_0(__mMain_block_func_0, &__mMain_block_desc_0_DATA, (__Block_byref_obj_0 *)&obj, 570425344));
    block->FuncPtr(block);

    return 0;
}

struct __Block_byref_obj_0 {
    void *__isa;
    __Block_byref_obj_0 *__forwarding;
    int __flags;
    int __size;
    void (*__Block_byref_id_object_copy)(void*, void*);
    void (*__Block_byref_id_object_dispose)(void*);
    NSObject *obj;
};

byref_keep函数在这里调用的就是__Block_byref_id_object_copy_131

// block -> Block_byref -> object
static void __Block_byref_id_object_copy_131(void *dst, void *src) {
    _Block_object_assign((char*)dst + 40, *(void * *) ((char*)src + 40), 131);
}
  • 结合__Block_byref_obj_0结构和Block_byref结构,向下平移40个字节,得到的是NSObject *obj,对obj也是调用了_Block_object_assign函数,传入的flags131

image.png

  • 3+128=131,所以当flags131时做的是*dest = object操作,也就是堆中object和栈中object指向同一片内存空间。

block拷贝总结:

  • block通过_Block_copy函数从栈拷贝到堆上。
  • block捕获变量Block_byref,通过_Block_object_assign函数从栈拷贝到堆上。
  • Block_byref中的object也是通过_Block_object_assign函数进行相关拷贝。

释放

释放时调用的__Block_byref_id_object_dispose_131函数:

static void __Block_byref_id_object_dispose_131(void *src) {
    _Block_object_dispose(*(void * *) ((char*)src + 40), 131);
}

然后调用_Block_object_dispose函数:

void _Block_object_dispose(const void *object, const int flags) {
    switch (os_assumes(flags & BLOCK_ALL_COPY_DISPOSE_FLAGS)) {
      case BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK:
      case BLOCK_FIELD_IS_BYREF:
        // get rid of the __block data structure held in a Block
        _Block_byref_release(object);
        break;
      case BLOCK_FIELD_IS_BLOCK:
        _Block_release(object);
        break;
      case BLOCK_FIELD_IS_OBJECT:
        _Block_release_object(object);
        break;
      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK:
      case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK  | BLOCK_FIELD_IS_WEAK:
        break;
      default:
        break;
    }
}