这是我参与8月更文挑战的第25天,活动详情查看:8月更文挑战
今晚还是有乒乓球赛,跟昨天一样,下午抽空先做下leetcode的题目。昨天比赛赢多输少,不过还是被淘汰了,没有把握住关键场次的关键球,有点可惜。打算比赛后好好买块乒乓板然后每月去打个3-4次,以这种方式重燃了小时候去国球的热情,也是意料之外。
今天做的是leetcode的第36题。
题目
请你判断一个 9x9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。
数字 1-9 在每一行只能出现一次。
数字 1-9 在每一列只能出现一次。
数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)
数独部分空格内已填入了数字,空白格用 '.' 表示。
注意:
一个有效的数独(部分已被填充)不一定是可解的。
只需要根据以上规则,验证已经填入的数字是否有效即可。
输入:board =
[["5","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
输出:true
示例 2:
输入:board =
[["8","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
输出:false
解释:除了第一行的第一个数字从 5 改为 8 以外,空格内其他数字均与 示例1 相同。 但由于位于左上角的 3x3 宫内有两个 8 存在, 因此这个数独是无效的。
思路
不太明白leetcode的难度定义逻辑,这题应该挺水的,竟然是个中等。
当然前提是要了解数独的规则,简单来说,一个99的大区域,有9行、9列、9个33的小方块,每个行、列、小方块就是1个小区域,每个小区域中,数字1-9各出现1次。
行和列都很好理解,小方块的画个图:
本题简单的地方在于,只要判断当前已经存在数字的地方,是否符合规则,而不用判断这个数独是否有解。
那我们直接定义3个9*9布尔类型的二维数组line、column、box,分别代表行、列、小方块;
line的第1维代表数组的0-8行,第2维代表1-9这9个数字是否出现过
column的第1维代表数组的0-8列,第2维代表1-9这9个数字是否出现过
box的第1维代表0-8个小方框,第2维代表1-9这9个数字是否出现过
默认值都是false,如果数组在这个位置出现了,就把它改成true,如果发现位置上已经是true了,就代表在1个小区域内出现了第2次,那就是无效的数独了。
可能存在的难点在于怎么判断1个单元格属于哪个小方块,可以这样:boxIndex = (i/3)*3 + j/3
Java版本代码
class Solution {
public boolean isValidSudoku(char[][] board) {
// 定义3个2维数据,分别代表 行、列、框
// line的第1维代表数组的0-8行,第2维代表1-9这9个数字是否出现过
// column的第1维代表数组的0-8列,第2维代表1-9这9个数字是否出现过
// box的第1维代表0-8个小方框,第2维代表1-9这9个数字是否出现过
// 初始都是false
boolean[][] line = new boolean[9][9];
boolean[][] column = new boolean[9][9];
boolean[][] box = new boolean[9][9];
for (int i = 0; i < 9; i++) {
for (int j = 0; j < 9; j++) {
char c = board[i][j];
if (c != '.') {
int val = c - '0';
if (line[i][val - 1] || column[j][val - 1] || box[(i/3)*3 + j/3][val - 1]) {
return false;
} else {
line[i][val - 1] = true;
column[j][val - 1] = true;
box[(i/3)*3 + j/3][val - 1] = true;
}
}
}
}
return true;
}
}