Elasticsearch高手进阶篇(1)
结构化搜索_IT技术论坛案例背景介绍
案例背景:IT技术论坛
-
IT技术论坛中相关的数据,会在es中建立数据的索引
- 深度讲解搜索,数据分析,数据建模
IT技术论坛,发各种IT技术的帖子:一种是自己研究了一个技术,就发出来一些研究心得;自己遇到了问题,发个帖子问一问。帖子会有人回复,还会有人浏览。当然了,还有一些论坛会提供简单社交的一个功能,互相加好友,互相关注,互相点赞,之类的。
在IT技术论坛的背景下,去开发一些跟案例背景相关的搜索或者数据分析,或者数据建模的需求,用每一讲学到的知识点,去接解决一些问题
既可以学到知识和技术,也可以在真实的案例背景中练习一下学到的东西
Elasticsearch高手进阶篇(2)
结构化搜索_在案例中实战使用term filter来搜索数据
1、根据用户ID、是否隐藏、帖子ID、发帖日期来搜索帖子
(1)插入一些测试帖子数据
POST /waws/article/_bulk
{ "index": { "_id": 1 }}
{ "articleID" : "XHDK-A-1293-#fJ3", "userID" : 1, "hidden": false, "postDate": "2017-01-01" }
{ "index": { "_id": 2 }}
{ "articleID" : "KDKE-B-9947-#kL5", "userID" : 1, "hidden": false, "postDate": "2017-01-02" }
{ "index": { "_id": 3 }}
{ "articleID" : "JODL-X-1937-#pV7", "userID" : 2, "hidden": false, "postDate": "2017-01-01" }
{ "index": { "_id": 4 }}
{ "articleID" : "QQPX-R-3956-#aD8", "userID" : 2, "hidden": true, "postDate": "2017-01-02" }
初步来说,就先搞4个字段,因为整个es是支持json document格式的,所以说扩展性和灵活性非常之好。如果后续随着业务需求的增加,要在document中增加更多的field,那么我们可以很方便的随时添加field。但是如果是在关系型数据库中,比如mysql,我们建立了一个表,现在要给表中新增一些column,那就很坑爹了,必须用复杂的修改表结构的语法去执行。而且可能对系统代码还有一定的影响
GET /waws/_mapping/article
{
"waws": {
"mappings": {
"article": {
"properties": {
"articleID": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"hidden": {
"type": "boolean"
},
"postDate": {
"type": "date"
},
"userID": {
"type": "long"
}
}
}
}
}
}
-
现在es 5.2版本,type=text, 默认会设置两个field
- 一个是field本身,比如articleID,就是分词的;
- 还有一个的话,就是field.keyword,articleID.keyword,默认不分词,会最多保留256个字符
# 查看字段的分词器 GET /waws/_analyze { "field": "article.articleID", "text":"KDKE-B-9947-#kL5" } { "tokens": [ { "token": "kdke", "start_offset": 0, "end_offset": 4, "type": "<ALPHANUM>", "position": 0 }, { "token": "b", "start_offset": 5, "end_offset": 6, "type": "<ALPHANUM>", "position": 1 }, { "token": "9947", "start_offset": 7, "end_offset": 11, "type": "<NUM>", "position": 2 }, { "token": "kl5", "start_offset": 13, "end_offset": 16, "type": "<ALPHANUM>", "position": 3 } ] } # 使用的是keyword的方式我们看到,并不分词 GET /waws/_analyze { "field": "articleID.keyword", "text":"KDKE-B-9947-#kL5" } { "error": { "root_cause": [ { "type": "remote_transport_exception", "reason": "[w85Pu0f][127.0.0.1:9300][indices:admin/analyze[s]]" } ], "type": "illegal_argument_exception", # 原因:不支持分词 "reason": "Can't process field [articleID.keyword], Analysis requests are only supported on tokenized fields" }, "status": 400 }- 使用"articleID" : "XHDK-A-1293-#fJ3"搜索不到任何数据的原因:
-
默认是analyzed的text类型的field,建立倒排索引的时候,就会对所有的articleID分词,分词以后,原本的articleID就没有了,只有分词后的各个word存在于倒排索引中。
-
term,是不对搜索文本分词的,XHDK-A-1293-#fJ3 --> XHDK-A-1293-#fJ3;但是articleID建立索引的时候,XHDK-A-1293-#fJ3 --> xhdk,a,1293,fj3
-
总结就是:我们的数据类型是text的,默认会进行分词,将分词数据放在倒排索引中,然后我们使用字段的整体的数据进行匹配的话,并不能索引到,所以我们可以使用articleID.keyword的整体的方式进行匹配。
(2)根据用户ID搜索帖子
GET /waws/article/_search
{
"query" : {
"constant_score" : {
"filter" : {
"term" : {
"userID" : 1
}
}
}
}
}
{
"took": 61,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 1,
"hits": [
{
"_index": "waws",
"_type": "article",
"_id": "2",
"_score": 1,
"_source": {
"articleID": "KDKE-B-9947-#kL5",
"userID": 1,
"hidden": false,
"postDate": "2017-01-02"
}
},
{
"_index": "waws",
"_type": "article",
"_id": "1",
"_score": 1,
"_source": {
"articleID": "XHDK-A-1293-#fJ3",
"userID": 1,
"hidden": false,
"postDate": "2017-01-01"
}
}
]
}
}
- term filter/query(
重要):对搜索文本不分词,直接拿去倒排索引中匹配,你输入的是什么,就去匹配什么,比如说,如果对搜索文本进行分词的话,“helle world” --> “hello”和“world”,两个词分别去倒排索引中匹配term,“hello world” --> “hello world”,直接去倒排索引中匹配“hello world”
(3)搜索没有隐藏的帖子
GET /waws/article/_search
{
"query" : {
"constant_score" : {
"filter" : {
"term" : {
"hidden" : false
}
}
}
}
}
{
"took": 4,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 3,
"max_score": 1,
"hits": [
{
"_index": "waws",
"_type": "article",
"_id": "2",
"_score": 1,
"_source": {
"articleID": "KDKE-B-9947-#kL5",
"userID": 1,
"hidden": false,
"postDate": "2017-01-02"
}
},
{
"_index": "waws",
"_type": "article",
"_id": "1",
"_score": 1,
"_source": {
"articleID": "XHDK-A-1293-#fJ3",
"userID": 1,
"hidden": false,
"postDate": "2017-01-01"
}
},
{
"_index": "waws",
"_type": "article",
"_id": "3",
"_score": 1,
"_source": {
"articleID": "JODL-X-1937-#pV7",
"userID": 2,
"hidden": false,
"postDate": "2017-01-01"
}
}
]
}
}
(4)根据发帖日期搜索帖子
GET /waws/article/_search
{
"query" : {
"constant_score" : {
"filter" : {
"term" : {
"postDate" : "2017-01-01"
}
}
}
}
}
(5)根据帖子ID搜索帖子
GET /waws/article/_search
{
"query" : {
"constant_score" : {
"filter" : {
"term" : {
"articleID" : "XHDK-A-1293-#fJ3"
}
}
}
}
}
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 0,
"max_score": null,
"hits": []
}
}
GET /waws/article/_search
{
"query" : {
"constant_score" : {
"filter" : {
"term" : {
"articleID.keyword" : "XHDK-A-1293-#fJ3"
}
}
}
}
}
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 1,
"hits": [
{
"_index": "waws",
"_type": "article",
"_id": "1",
"_score": 1,
"_source": {
"articleID": "XHDK-A-1293-#fJ3",
"userID": 1,
"hidden": false,
"postDate": "2017-01-01"
}
}
]
}
}
-
articleID.keyword,是es最新版本内置建立的field,就是不分词的。所以一个articleID过来的时候,会建立两次索引,一次是自己本身,是要分词的,分词后放入倒排索引;另外一次是基于articleID.keyword,不分词,保留256个字符最多,直接一个字符串放入倒排索引中。
-
term filter,对text过滤,可以考虑使用内置的field.keyword来进行匹配。但是有个问题,默认就保留256个字符。所以尽可能还是自己去手动建立索引,指定not_analyzed吧。在最新版本的es中,不需要指定not_analyzed也可以,将type=keyword即可。
(6)重建索引
DELETE /waws
PUT /waws
{
"mappings": {
"article": {
"properties": {
"articleID": {
"type": "keyword"
}
}
}
}
}
重新输入数据
POST /waws/article/_bulk
{ "index": { "_id": 1 }}
{ "articleID" : "XHDK-A-1293-#fJ3", "userID" : 1, "hidden": false, "postDate": "2017-01-01" }
{ "index": { "_id": 2 }}
{ "articleID" : "KDKE-B-9947-#kL5", "userID" : 1, "hidden": false, "postDate": "2017-01-02" }
{ "index": { "_id": 3 }}
{ "articleID" : "JODL-X-1937-#pV7", "userID" : 2, "hidden": false, "postDate": "2017-01-01" }
{ "index": { "_id": 4 }}
{ "articleID" : "QQPX-R-3956-#aD8", "userID" : 2, "hidden": true, "postDate": "2017-01-02" }
(7)重新根据帖子ID和发帖日期进行搜索
GET /waws/article/_search
{
"query" : {
"constant_score" : {
"filter" : {
"term" : {
"articleID" : "XHDK-A-1293-#fJ3"
}
}
}
}
}
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 1,
"hits": [
{
"_index": "waws",
"_type": "article",
"_id": "1",
"_score": 1,
"_source": {
"articleID": "XHDK-A-1293-#fJ3",
"userID": 1,
"hidden": false,
"postDate": "2017-01-01"
}
}
]
}
}
2、梳理学到的知识点
(1)term filter:根据exact value进行搜索,数字、boolean、date天然支持
(2)text需要建索引时指定为not_analyzed,才能用term query
(3)相当于SQL中的单个where条件
select * from forum.article where articleID='XHDK-A-1293-#fJ3'