以一条SQL语句的执行过程,来分析MySQL的架构体系
一、一条查询语句的执行过程
1.1 SQL执行流程
从图中可以清晰的看到一条SQL语句的执行过程。下面就具体分析每一步MySQL都做了什么。
1.2 建立连接
建立连接是客户端和MySQL交互的第一步。这里涉及到通信协议,下面就具体来分析MySQL的通信协议相关内容。
1.2.1 通信类型:同步or异步?
同步通信的特点:
- 同步通信依赖于被调用方,受限于被调用方的性能。也就是说,应用操作数据库,线程会阻塞,等待数据库的返回
- 一般只能做到一对一,很难做到一对多的通信。
异步跟同步相反: - 异步可以避免应用阻塞等待,但是不能节省 SQL 执行的时间。
- 如果异步存在并发,每一个 SQL 的执行都要单独建立一个连接,避免数据混乱。但是这样会给服务端带来巨大的压力(一个连接就会创建一个线程,线程间切换会占用大量 CPU 资源)。另外异步通信还带来了编码的复杂度,所以一般不建议使用。如果要异步,必须使用连接池,排队从连接池获取连接而不是创建新连接。
一般来说我们连接数据库都是同步连接。
1.2.2 连接方式:长连接or短连接
MySQL 既支持短连接,也支持长连接。短连接就是操作完毕以后,马上 close 掉。长连接可以保持打开,减少服务端创建和释放连接的消耗,后面的程序访问的时候还可以使用这个连接。一般我们会在连接池中使用长连接。 保持长连接会消耗内存。长时间不活动的连接,MySQL 服务器会断开。
show global variables like 'wait_timeout'; -- 非交互式超时时间,如 JDBC 程序
show global variables like 'interactive_timeout'; -- 交互式超时时间,如数据库工具
默认都是 28800 秒,8 小时
1.2.3 通信协议
MySQL 支持哪些通信协议呢?
第一种是 Unix Socket。
比如我们在 Linux 服务器上,如果没有指定-h 参数,它就用 socket 方式登录(省略了-S /var/lib/mysql/mysql.sock)。它不用通过网络协议,也可以连接到 MySQL 的服务器,它需要用到服务器上的一个物理文件(/var/lib/mysql/mysql.sock)。
select @@socket;
第二种方式,TCP/IP 协议。
如果指定-h 参数,就会用第二种方式,TCP/IP 协议。
mysql -h192.168.8.211 -uroot -p123456
我们的编程语言的连接模块都是用 TCP 协议连接到 MySQL 服务器的,比如mysql-connector-java-x.x.xx.jar
另外还有命名管道(Named Pipes)和内存共享(Share Memory)的方式,这两种通信方式只能在 Windows 上面使用,一般用得比较少。
1.2.4通信方式
单工:
在两台计算机通信的时候,数据的传输是单向的。生活中的类比:遥控器。
半双工:
在两台计算机之间,数据传输是双向的,你可以给我发送,我也可以给你发送,但是在这个通讯连接里面,同一时间只能有一台服务器在发送数据,也就是你要给我发的话,也必须等我发给你完了之后才能给我发。生活中的类比:对讲机。
全双工: 数据的传输是双向的,并且可以同时传输。生活中的类比:打电话。
MySQL 使用了半双工的通信方式?
要么是客户端向服务端发送数据,要么是服务端向客户端发送数据,这两个动作不能同时发生。所以客户端发送 SQL 语句给服务端的时候,(在一次连接里面)数据是不能分成小块发送的,不管你的 SQL 语句有多大,都是一次性发送。比如我们用 MyBatis 动态 SQL 生成了一个批量插入的语句,插入 10 万条数据,values后面跟了一长串的内容,或者 where 条件 in 里面的值太多,会出现问题。这个时候我们必须要调整 MySQL 服务器配置 max_allowed_packet 参数的值(默认是 4M),把它调大,否则就会报错。
另一方面,对于服务端来说,也是一次性发送所有的数据,不能因为你已经取到了想要的数据就中断操作,这个时候会对网络和内存产生大量消耗。所以,我们一定要在程序里面避免不带 limit 的这种操作,比如一次把所有满足条件的数据全部查出来,一定要先 count 一下。如果数据量的话,可以分批查询。
1.3 查询缓存
MySQL 内部自带了一个缓存模块。
缓存的作用我们应该很清楚了,把数据以 KV 的形式放到内存里面,可以加快数据的读取速度,也可以减少服务器处理的时间。但是 MySQL 的缓存我们好像比较陌生,从来没有去配置过,也不知道它什么时候生效?比如 user_innodb 有 500 万行数据,没有索引。我们在没有索引的字段上执行同样的查询,大家觉得第二次会快吗?
select * from user_innodb where name='青山';
缓存没有生效,为什么?MySQL 的缓存默认是关闭的。
show variables like 'query_cache%';
默认关闭的意思就是不推荐使用,为什么 MySQL 不推荐使用它自带的缓存呢?
主要是因为 MySQL 自带的缓存的应用场景有限,第一个是它要求 SQL 语句必须一模一样,中间多一个空格,字母大小写不同都被认为是不同的的 SQL。
第二个是表里面任何一条数据发生变化的时候,这张表所有缓存都会失效,所以对于有大量数据更新的应用,也不适合。
所以缓存这一块,我们还是交给 ORM 框架(比如 MyBatis 默认开启了一级缓存),或者独立的缓存服务,比如 Redis 来处理更合适。
在 MySQL 8.0 中,查询缓存已经被移除了。
1.4 解析器(Parser)
我们没有使用缓存的话,就会跳过缓存的模块,下一步我们要做什么呢?
OK,这里我会有一个疑问,为什么我的一条 SQL 语句能够被识别呢?假如我随便执行一个字符串 penyuyan,服务器报了一个 1064 的错:
[Err] 1064 - You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'penyuyan' at line 1
它是怎么知道我输入的内容是错误的?
这个就是 MySQL 的 Parser 解析器和 Preprocessor 预处理模块。这一步主要做的事情是对语句基于 SQL 语法进行词法和语法分析和语义的解析。
1.4.1 词法解析
词法解析就是把一条完成的SQL语句打散成一个个的单词。
比如一条简单的SQL语句:
select name from user where id=1;
它会被打散成8个符号,每个符号是什么类型,从哪里开始到哪里结束。
1.4.2 语法解析
第二步就是语法分析,语法分析会对 SQL 做一些语法检查,比如单引号有没有闭合,然后根据 MySQL 定义的语法规则,根据 SQL 语句生成一个数据结构。这个数据结构我们把它叫做解析树(select_lex)。
1.5 预处理器(Preprocessor)
问题:如果我写了一个词法和语法都正确的 SQL,但是表名或者字段不存在,会在哪里报错?是在数据库的执行层还是解析器?比如: select * from hello;
解析器可以分析语法,但是它怎么知道数据库里面有什么表,表里面有什么字段呢?实际上还是在解析的时候报错,解析 SQL 的环节里面有个预处理器。它会检查生成的解析树,解决解析器无法解析的语义。比如,它会检查表和列名是否存在,检查名字和别名,保证没有歧义。预处理之后得到一个新的解析树。
1.6 优化器
抛出一个问题:一条SQL语句是不是只有一种执行方式呢?或者说MySQL最终执行的SQL是不是我们发送的SQL?
这个答案是否定的。一条 SQL 语句是可以有很多种执行方式的,最终返回相同的结果,他们是等价的。但是如果有这么多种执行方式,这些执行方式怎么得到的?最终选择哪一种去执行?根据什么判断标准去选择?
这个就是 MySQL 的查询优化器的模块(Optimizer)。
查询优化器的目的就是根据解析树生成不同的执行计划(Execution Plan),然后选择一种最优的执行计划,MySQL 里面使用的是基于开销(cost)的优化器,那种执行计划开销最小,就用哪种。
1.6.1 优化器可以做什么
MySQL 的优化器能处理哪些优化类型呢?
举两个简单的例子:
- 当我们对多张表进行关联查询的时候,以哪个表的数据作为基准表。
- 有多个索引可以使用的时候,选择哪个索引。
实际上,对于每一种数据库来说,优化器的模块都是必不可少的,他们通过复杂的算法实现尽可能优化查询效率的目标。
但是优化器也不是万能的,并不是再垃圾的 SQL 语句都能自动优化,也不是每次都能选择到最优的执行计划,大家在编写 SQL 语句的时候还是要注意。
1.6.2 优化器得到的结果
优化完之后,得到一个什么东西呢?
优化器最终会把解析树变成一个查询执行计划,查询执行计划是一个数据结构。当然,这个执行计划是不是一定是最优的执行计划呢?不一定,因为 MySQL 也有可能覆盖不到所有的执行计划。
我们怎么查看 MySQL 的执行计划呢?比如多张表关联查询,先查询哪张表?在执行查询的时候可能用到哪些索引,实际上用到了什么索引?
MySQL 提供了一个执行计划的工具。我们在 SQL 语句前面加上 EXPLAIN,就可以看到执行计划的信息。
EXPLAIN select name from user where id=1;
注意 Explain 的结果也不一定最终执行的方式。
1.7 存储引擎
得到执行计划以后,SQL 语句是不是终于可以执行了?问题又来了:
- 从逻辑的角度来说,我们的数据是放在哪里的,或者说放在一个什么结构里面?
- 执行计划在哪里执行?是谁去执行?
1.7.1 存储引擎介绍
我们先回答第一个问题:在关系型数据库里面,数据是放在什么结构里面的?
(放在表 Table 里面的)
我们可以把这个表理解成 Excel 电子表格的形式。所以我们的表在存储数据的同时,还要组织数据的存储结构,这个存储结构就是由我们的存储引擎决定的,所以我们也可以把存储引擎叫做表类型。
在 MySQL 里面,支持多种存储引擎,他们是可以替换的,所以叫做插件式的存储引擎。为什么要搞这么多存储引擎呢?一种还不够用吗?
1.7.2 查看存储引擎
比如我们数据库里面已经存在的表,我们怎么查看它们的存储引擎呢?
show table status from test;
或者通过 DDL 建表语句来查看。
在 MySQL 里面,我们创建的每一张表都可以指定它的存储引擎,而不是一个数据库只能使用一个存储引擎。存储引擎的使用是以表为单位的。而且,创建表之后还可以修改存储引擎。
我们说一张表使用的存储引擎决定我们存储数据的结构,那在服务器上它们是怎么存储的呢?
默认情况下,每个数据库有一个自己文件夹,以 test 数据库为例。任何一个存储引擎都有一个 frm 文件,这个是表结构定义文件。
1.7.3 存储引擎比较
我们可以用这个命令查看数据库对存储引擎的支持情况:
show engines;
其中有存储引擎的描述和对事务、XA 协议和 Savepoints 的支持。
- XA 协议用来实现分布式事务(分为本地资源管理器,事务管理器)。
- Savepoints 用来实现子事务(嵌套事务)。创建了一个 Savepoints 之后,事务就可以回滚到这个点,不会影响到创建 Savepoints 之前的操作。
1. MyISAM(3 个文件) 应用范围比较小。表级锁定限制了读/写的性能,因此在 Web 和数据仓库配置中,它通常用于只读或以读为主的工作。
特点:
- 支持表级别的锁(插入和更新会锁表)。不支持事务。
- 拥有较高的插入(insert)和查询(select)速度。
- 存储了表的行数(count 速度更快)。
(怎么快速向数据库插入 100 万条数据?我们有一种先用 MyISAM 插入数据,然后修改存储引擎为 InnoDB 的操作。)
适合:只读之类的数据分析的项目。
2. InnoDB(2 个文件) mysql 5.7 中的默认存储引擎。InnoDB 是一个事务安全(与 ACID 兼容)的 MySQL存储引擎,它具有提交、回滚和崩溃恢复功能来保护用户数据。InnoDB 行级锁(不升级为更粗粒度的锁)和 Oracle 风格的一致非锁读提高了多用户并发性和性能。InnoDB 将用户数据存储在聚集索引中,以减少基于主键的常见查询的 I/O。为了保持数据完整性, InnoDB 还支持外键引用完整性约束。
特点:
- 支持事务,支持外键,因此数据的完整性、一致性更高。
- 支持行级别的锁和表级别的锁。
- 支持读写并发,写不阻塞读(MVCC)。
- 特殊的索引存放方式,可以减少 IO,提升查询效率。
适合:经常更新的表,存在并发读写或者有事务处理的业务系统。
1.7.4 如何选择存储引擎
- 如果对数据一致性要求比较高,需要事务支持,可以选择 InnoDB。
- 如果数据查询多更新少,对查询性能要求比较高,可以选择 MyISAM。
- 如果需要一个用于查询的临时表,可以选择 Memory。
- 如果所有的存储引擎都不能满足你的需求,并且技术能力足够,可以根据官网内部手册用 C 语言开发一个存储引擎:dev.mysql.com/doc/interna…
1.8 执行引擎
OK,存储引擎分析完了,它是我们存储数据的形式,继续第二个问题,是谁使用执行计划去操作存储引擎呢?
这就是我们的执行引擎,它利用存储引擎提供的相应的 API 来完成操作。
为什么我们修改了表的存储引擎,操作方式不需要做任何改变?因为不同功能的存储引擎实现的 API 是相同的。
最后把数据返回给客户端,即使没有结果也要返回。
二、MySQL的体系结构总结
基于上面分析的流程,我们一起来梳理一下 MySQL 的内部模块。
2.1 模块详解
- Connector:用来支持各种语言和 SQL 的交互,比如 PHP,Python,Java 的JDBC;
- Management Serveices & Utilities:系统管理和控制工具,包括备份恢复、MySQL 复制、集群等等;
- Connection Pool:连接池,管理需要缓冲的资源,包括用户密码权限线程等等;
- SQL Interface:用来接收用户的 SQL 命令,返回用户需要的查询结果
- Parser:用来解析 SQL 语句;
- Optimizer:查询优化器;
- Cache and Buffer:查询缓存,除了行记录的缓存之外,还有表缓存,Key 缓存,权限缓存等等;
- Pluggable Storage Engines:插件式存储引擎,它提供 API 给服务层使用,跟具体的文件打交道。
2.2 架构分层
总体上,我们可以把 MySQL 分成三层,跟客户端对接的连接层,真正执行操作的服务层,和跟硬件打交道的存储引擎层(参考 MyBatis:接口、核心、基础)。
2.2.1 连接层
我们的客户端要连接到 MySQL 服务器 3306 端口,必须要跟服务端建立连接,那么管理所有的连接,验证客户端的身份和权限,这些功能就在连接层完成。
2.2.2 服务层
连接层会把 SQL 语句交给服务层,这里面又包含一系列的流程:比如查询缓存的判断、根据 SQL 调用相应的接口,对我们的 SQL 语句进行词法和语法的解析(比如关键字怎么识别,别名怎么识别,语法有没有错误等等)。然后就是优化器,MySQL 底层会根据一定的规则对我们的 SQL 语句进行优化,最后再交给执行器去执行。
2.1.3 存储引擎
存储引擎就是我们的数据真正存放的地方,在 MySQL 里面支持不同的存储引擎。再往下就是内存或者磁盘。
三、一条更新语句的执行过程
更新语句包括:insert、update、delete
首先,InnnoDB 的数据都是放在磁盘上的,InnoDB 操作数据有一个最小的逻辑单位,叫做页(索引页和数据页)。我们对于数据的操作,不是每次都直接操作磁盘,因为磁盘的速度太慢了。InnoDB 使用了一种缓冲池的技术,也就是把磁盘读到的页放到一块内存区域里面。这个内存区域就叫 Buffer Pool。
下一次读取相同的页,先判断是不是在缓冲池里面,如果是,就直接读取,不用再次访问磁盘。修改数据的时候,先修改缓冲池里面的页。内存的数据页和磁盘数据不一致的时候,我们把它叫做脏页。InnoDB 里面有专门的后台线程把 Buffer Pool 的数据写入到磁盘,每隔一段时间就一次性地把多个修改写入磁盘,这个动作就叫做刷脏。
Buffer Pool 是 InnoDB 里面非常重要的一个结构,它的内部又分成几块区域。这里我们趁机到官网来认识一下 InnoDB 的内存结构和磁盘结构。
3.1 InnoDB 内存结构和磁盘结构
3.1.1 内存结构
Buffer Pool 主要分为 3 个部分: Buffer Pool、Change Buffer、Adaptive HashIndex,另外还有一(redo)log buffer。
3.1.1.1 Buffer Pool
Buffer Pool 缓存的是页面信息,包括数据页、索引页。查看服务器状态,里面有很多跟 Buffer Pool 相关的信息:SHOW STATUS LIKE '%innodb_buffer_pool%';
Buffer Pool 默认大小是 128M(134217728 字节),可以调整。
查看参数(系统变量):
SHOW VARIABLES like '%innodb_buffer_pool%';
内存的缓冲池写满了怎么办?(Redis 设置的内存满了怎么办?)InnoDB 用 LRU算法来管理缓冲池(链表实现,不是传统的 LRU,分成了 young 和 old),经过淘汰的数据就是热点数据。
内存缓冲区对于提升读写性能有很大的作用。思考一个问题:当需要更新一个数据页时,如果数据页在 Buffer Pool 中存在,那么就直接更新好了。否则的话就需要从磁盘加载到内存,再对内存的数据页进行操作。也就是说,如果没有命中缓冲池,至少要产生一次磁盘 IO,有没有优化的方式呢?
3.1.1.2 Change Buffer
如果这个数据页不是唯一索引,不存在数据重复的情况,也就不需要从磁盘加载索引页判断数据是不是重复(唯一性检查)。这种情况下可以先把修改记录在内存的缓冲池中,从而提升更新语句(Insert、Delete、Update)的执行速度。
这一块区域就是 Change Buffer。5.5 之前叫 Insert Buffer 插入缓冲,现在也能支持 delete 和 update。 最后把 Change Buffer 记录到数据页的操作叫做 merge。什么时候发生 merge?
有几种情况:在访问这个数据页的时候,或者通过后台线程、或者数据库 shut down、redo log 写满时触发。
如果数据库大部分索引都是非唯一索引,并且业务是写多读少,不会在写数据后立刻读取,就可以使用 Change Buffer(写缓冲)。写多读少的业务,调大这个值:
SHOW VARIABLES LIKE 'innodb_change_buffer_max_size';
代表 Change Buffer 占 Buffer Pool 的比例,默认 25%。
3.1.1.3 Adaptive Hash Index
索引应该是放在磁盘的,为什么要专门把一种哈希的索引放到内存?下次再说。
3.1.1.4 (redo)Log Buffer
思考一个问题:如果 Buffer Pool 里面的脏页还没有刷入磁盘时,数据库宕机或者重启,这些数据丢失。如果写操作写到一半,甚至可能会破坏数据文件导致数据库不可用。
为了避免这个问题,InnoDB 把所有对页面的修改操作专门写入一个日志文件,并且在数据库启动时从这个文件进行恢复操作(实现 crash-safe)——用它来实现事务的持久性。
这个文件就是磁盘的 redo log(叫做重做日志),对应于/var/lib/mysql/目录下的ib_logfile0 ib_logfile1,每个 48M。
这 种 日 志 和 磁 盘 配 合 的 整 个 过 程 , 其 实 就 是 MySQL 里 的 WAL 技 术(Write-Ahead Logging),它的关键点就是先写日志,再写磁盘。
show variables like 'innodb_log%';
问题: 同样是写磁盘,为什么不直接写到 db file 里面去?为什么先写日志再写磁盘?
我们先来了解一下随机 I/O 和顺序 I/O 的概念。
- 磁盘的最小组成单元是扇区,通常是 512 个字节。
- 操作系统和内存打交道,最小的单位是页 Page。
- 操作系统和磁盘打交道,读写磁盘,最小的单位是块 Block。
如果我们所需要的数据是随机分散在不同页的不同扇区中,那么找到相应的数据需要等到磁臂旋转到指定的页,然后盘片寻找到对应的扇区,才能找到我们所需要的一块数据,一次进行此过程直到找完所有数据,这个就是随机 IO,读取数据速度较慢。
假设我们已经找到了第一块数据,并且其他所需的数据就在这一块数据后边,那么就不需要重新寻址,可以依次拿到我们所需的数据,这个就叫顺序 IO。
刷盘是随机 I/O,而记录日志是顺序 I/O,顺序 I/O 效率更高。因此先把修改写入日志,可以延迟刷盘时机,进而提升系统吞吐。
当然 redo log 也不是每一次都直接写入磁盘,在 Buffer Pool 里面有一块内存区域(Log Buffer)专门用来保存即将要写入日志文件的数据,默认 16M,它一样可以节省磁盘 IO。
SHOW VARIABLES LIKE 'innodb_log_buffer_size';
需要注意:redo log 的内容主要是用于崩溃恢复。磁盘的数据文件,数据来自 bufferpool。redo log 写入磁盘,不是写入数据文件。那么,Log Buffer 什么时候写入 log file?
在我们写入数据到磁盘的时候,操作系统本身是有缓存的。flush 就是把操作系统缓冲区写入到磁盘。
log buffer 写入磁盘的时机,由一个参数控制,默认是 1。
SHOW VARIABLES LIKE 'innodb_flush_log_at_trx_commit';
这是内存结构的第 4 块内容,redo log,它又分成内存和磁盘两部分。redo log 有什么特点?
- redo log 是 InnoDB 存储引擎实现的,并不是所有存储引擎都有。
- 不是记录数据页更新之后的状态,而是记录这个页做了什么改动,属于物理日志。
- redo log 的大小是固定的,前面的内容会被覆盖。
check point 是当前要覆盖的位置。如果 write pos 跟 check point 重叠,说明 redolog 已经写满,这时候需要同步 redo log 到磁盘中。
这是 MySQL 的内存结构,总结一下,分为:
Buffer pool、change buffer、Adaptive Hash Index、 log buffer。
3.1.2 磁盘结构
磁盘结构里面主要是各种各样的表空间,叫做 Table space。我所理解的表空间,其实就是一个存放表结构和数据的文件。
表空间可以看做是 InnoDB 存储引擎逻辑结构的最高层,所有的数据都存放在表空间中。InnoDB 的表空间分为 5 大类。
3.1.2.1 系统表空间
在默认情况下 InnoDB 存储引擎有一个共享表空间(对应文件/var/lib/mysql/ibdata1),也叫系统表空间。 InnoDB 系统表空间包含 InnoDB 数据字典和双写缓冲区,Change Buffer 和 UndoLogs),如果没有指定 file-per-table,也包含用户创建的表和索引数据。
- undo 在后面介绍,因为有独立的表空间。
- 数据字典:由内部系统表组成,存储表和索引的元数据(定义信息)。
- 双写缓冲(InnoDB 的一大特性):InnoDB 的页和操作系统的页大小不一致,InnoDB 页大小一般为 16K,操作系统页大小为 4K,InnoDB 的页写入到磁盘时,一个页需要分 4 次写。
如果存储引擎正在写入页的数据到磁盘时发生了宕机,可能出现页只写了一部分的情况,比如只写了 4K,就宕机了,这种情况叫做部分写失效(partial page write),可能会导致数据丢失。
我们不是有 redo log 吗?但是有个问题,如果这个页本身已经损坏了,用它来做崩溃恢复是没有意义的。所以在对于应用 redo log 之前,需要一个页的副本。如果出现了写入失效,就用页的副本来还原这个页,然后再应用 redo log。这个页的副本就是 double write,InnoDB 的双写技术。通过它实现了数据页的可靠性。
跟 redo log 一样,double write 由两部分组成,一部分是内存的 double write,一个部分是磁盘上的 double write。因为 double write 是顺序写入的,不会带来很大的开销。
在默认情况下,所有的表共享一个系统表空间,这个文件会越来越大,而且它的空间不会收缩。
3.1.2.2 独占表空间
我们可以让每张表独占一个表空间。这个开关通过 innodb_file_per_table 设置,默认开启。
SHOW VARIABLES LIKE 'innodb_file_per_table';
开启后,则每张表会开辟一个表空间,这个文件就是数据目录下的 ibd 文件(例如 /var/lib/mysql/gupao/user_innodb.ibd),存放表的索引和数据。但是其他类的数据,如回滚(undo)信息,插入缓冲索引页、系统事务信息,二次写缓冲(Double write buffer)等还是存放在原来的共享表空间内。
3.1.2.3 通用表空间
通用表空间也是一种共享的表空间,跟 ibdata1 类似。可以创建一个通用的表空间,用来存储不同数据库的表,数据路径和文件可以自定义。
3.1.2.4 undo log tablespace
undo log(撤销日志或回滚日志)记录了事务发生之前的数据状态(不包括 select)。
如果修改数据时出现异常,可以用 undo log 来实现回滚操作(保持原子性)。在执行 undo 的时候,仅仅是将数据从逻辑上恢复至事务之前的状态,而不是从物理页面上操作实现的,属于逻辑格式的日志。
redo Log 和 undo Log 与事务密切相关,统称为事务日志。
undo Log 的数据默认在系统表空间 ibdata1 文件中,因为共享表空间不会自动收缩,也可以单独创建一个 undo 表空间。
3.2 Binlog
binlog 以事件的形式记录了所有的 DDL 和 DML 语句(因为它记录的是操作而不是数据值,属于逻辑日志),可以用来做主从复制和数据恢复。
跟 redo log 不一样,它的文件内容是可以追加的,没有固定大小限制。
在开启了 binlog 功能的情况下,我们可以把 binlog 导出成 SQL 语句,把所有的操作重放一遍,来实现数据的恢复。
binlog 的另一个功能就是用来实现主从复制,它的原理就是从服务器读取主服务器的 binlog,然后执行一遍。
3.3 更新语句执行过程
例如一条语句:update teacher set name='盆鱼宴' where id=1;
- 先查询到这条数据,如果有缓存,也会用到缓存。
- 把 name 改成盆鱼宴,然后调用引擎的 API 接口,写入这一行数据到内存,同时记录 redo log。这时 redo log 进入 prepare 状态,然后告诉执行器,执行完成了,可以随时提交。
- 执行器收到通知后记录 binlog,然后调用存储引擎接口,设置 redo log为 commit状态。
- 更新完成
重点:
- 先记录到内存,再写日志文件。
- 记录 redo log 分为两个阶段。
- 存储引擎和 Server 记录不同的日志。
- 先记录 redo,再记录 binlog。
四、总结
- SQL执行过程:建立链接 - 查询缓存 - 词法语法分析 - 语义解析 - 优化器生成执行计划 - 执行引擎调用存储引擎接口 - 返回数据
- MySQL三层架构:连接层 - 服务层 - 存储层
- Innodb存储引擎的内存结构:
- Buffer Pool
- Change Buffer
- Hash Index
- redo log buffer
- 数据的更新过程:
- 若Buffer Pool有缓存则直接更新,记录redo log
- 若Buffer Pool没有则记录Change Buffer缓存,记录redo log
- Buffer Pool 默认128M,Change Buffer占25%