每日题解——2021-8-18

216 阅读2分钟

这是我参与8月更文挑战的第18天,活动详情查看:8月更文挑战

552. 学生出勤记录 II

可以用字符串表示一个学生的出勤记录,其中的每个字符用来标记当天的出勤情况(缺勤、迟到、到场)。记录中只含下面三种字符: 'A':Absent,缺勤 'L':Late,迟到 'P':Present,到场 如果学生能够 同时 满足下面两个条件,则可以获得出勤奖励:

按 总出勤 计,学生缺勤('A')严格 少于两天。 学生 不会 存在 连续 3 天或 连续 3 天以上的迟到('L')记录。 给你一个整数 n ,表示出勤记录的长度(次数)。请你返回记录长度为 n 时,可能获得出勤奖励的记录情况 数量 。答案可能很大,所以返回对 109 + 7 取余 的结果。

 

示例 1:

输入:n = 2
输出:8
解释:
有 8 种长度为 2 的记录将被视为可奖励:
"PP" , "AP", "PA", "LP", "PL", "AL", "LA", "LL" 
只有"AA"不会被视为可奖励,因为缺勤次数为 2 次(需要少于 2 次)。

示例 2:

输入:n = 1
输出:3

示例 3:

输入:n = 10101
输出:183236316

提示:

1 <= n <= 105

552. Student Attendance Record II

An attendance record for a student can be represented as a string where each character signifies whether the student was absent, late, or present on that day. The record only contains the following three characters:

'A': Absent. 'L': Late. 'P': Present. Any student is eligible for an attendance award if they meet both of the following criteria:

The student was absent ('A') for strictly fewer than 2 days total. The student was never late ('L') for 3 or more consecutive days. Given an integer n, return the number of possible attendance records of length n that make a student eligible for an attendance award. The answer may be very large, so return it modulo 109 + 7.

 

Example 1:

Input: n = 2
Output: 8
Explanation: There are 8 records with length 2 that are eligible for an award:
"PP", "AP", "PA", "LP", "PL", "AL", "LA", "LL"
Only "AA" is not eligible because there are 2 absences (there need to be fewer than 2).

Example 2:

Input: n = 1
Output: 3

Example 3:

Input: n = 10101
Output: 183236316

Constraints:

1 <= n <= 105

解题思路 (动态规划)

可以使用动态规划计算可奖励的出勤记录的数量。

由于可奖励的出勤记录要求缺勤次数少于 22 和连续迟到次数少于 33,因此动态规划的状态由总天数、缺勤次数和结尾连续迟到次数决定(由于不会记录连续迟到次数等于或多于 33 的情况,因此非结尾的连续迟到次数一定少于 33,只需要记录结尾连续迟到次数即可)。

代码

/**
 * @param {number} n
 * @return {number}
 */
var checkRecord = function(n) {
    const MOD = 1000000007;
    const dp = new Array(n + 1).fill(2).map(() => new Array(2).fill(0).map(() => new Array(3).fill(0))); // 长度,A 的数量,结尾连续 L 的数量
    dp[0][0][0] = 1;
    for (let i = 1; i <= n; i++) {
        // 以 P 结尾的数量
        for (let j = 0; j <= 1; j++) {
            for (let k = 0; k <= 2; k++) {
                dp[i][j][0] = (dp[i][j][0] + dp[i - 1][j][k]) % MOD;
            }
        }
        // 以 A 结尾的数量
        for (let k = 0; k <= 2; k++) {
            dp[i][1][0] = (dp[i][1][0] + dp[i - 1][0][k]) % MOD;
        }
        // 以 L 结尾的数量
        for (let j = 0; j <= 1; j++) {
            for (let k = 1; k <= 2; k++) {
                dp[i][j][k] = (dp[i][j][k] + dp[i - 1][j][k - 1]) % MOD;
            }
        }
    }
    let sum = 0;
    for (let j = 0; j <= 1; j++) {
        for (let k = 0; k <= 2; k++) {
            sum = (sum + dp[n][j][k]) % MOD;
        }
    }
    return sum;
};