CAP & BASE

362 阅读6分钟

1. CAP

Consistency Availability Partition tolerance

image

1.1. Consistency(一致性)

  写操作之后的读操作,必须返回该值。举例来说,某条记录是 v0,用户向 G1 发起一个写操作,将其改为 v1。接下来,用户的读操作就会得到 v1。这就叫一致性。问题是,用户有可能向 G2 发起读操作,由于 G2 的值没有发生变化,因此返回的是 v0。G1 和 G2 读操作的结果不一致,这就不满足一致性了。为了让 G2 也能变为 v1,就要在 G1 写操作的时候,让 G1 向 G2 发送一条消息,要求 G2 也改成 v1。这样的话,用户向 G2 发起读操作,也能得到 v1。

1.2. Availability(可用性)

  只要收到用户的请求,服务器就必须给出回应。
  用户可以选择向 G1 或 G2 发起读操作。不管是哪台服务器,只要收到请求,就必须告诉用户,到底是 v0 还是 v1,否则就不满足可用性。

1.3. Partition tolerance(分区容错)

  大多数分布式系统都分布在多个子网络。每个子网络就叫做一个区(partition)。分区容错的意思是,区间通信可能失败。比如,一台服务器放在中国,另一台服务器放在美国,这就是两个区,它们之间可能无法通信;G1 和 G2 是两台跨区的服务器。G1 向 G2 发送一条消息,G2 可能无法收到。系统设计的时候,必须考虑到这种情况。
  一般来说,分区容错无法避免,因此可以认为 CAP 的 P 总是成立。CAP 定理告诉我们,剩下的 C 和 A 无法同时做到。

1.4. Consistency和Availability的矛盾

  一致性和可用性,为什么不可能同时成立?答案很简单,因为可能通信失败(即出现分区容错)。
  如果保证 G2 的一致性,那么 G1 必须在写操作时,锁定 G2 的读操作和写操作。只有数据同步后,才能重新开放读写。锁定期间,G2 不能读写,没有可用性不。
  如果保证 G2 的可用性,那么势必不能锁定 G2,所以一致性不成立。
  综上所述,G2 无法同时做到一致性和可用性。系统设计时只能选择一个目标。如果追求一致性,那么无法保证所有节点的可用性;如果追求所有节点的可用性,那就没法做到一致性。

2. BASE

Basically Available(基本可用) Soft State(软状态) Eventually Consistent(最终一致性)

2.1. 基本可用

  假设系统,出现了不可预知的故障,但还是能用,相比较正常的系统而言:响应时间上的损失:正常情况下的搜索引擎0.5秒即返回给用户结果,而基本可用的搜索引擎可以在2秒作用返回结果。功能上的损失:在一个电商网站上,正常情况下,用户可以顺利完成每一笔订单。但是到了大促期间,为了保护购物系统的稳定性,部分消费者可能会被引导到一个降级页面。

2.2. 软状态

  相对于原子性而言,要求多个节点的数据副本都是一致的,这是一种“硬状态”。软状态指的是:允许系统中的数据存在中间状态,并认为该状态不影响系统的整体可用性,即允许系统在多个不同节点的数据副本存在数据延时。

2.3. 最终一致性

  上面说软状态,然后不可能一直是软状态,必须有个时间期限。在期限过后,应当保证所有副本保持数据一致性,从而达到数据的最终一致性。这个时间期限取决于网络延时、系统负载、数据复制方案设计等等因素,最终一致性分为5种

2.3.1. Causal consistency(因果一致性)

  因果一致性指的是:如果节点A在更新完某个数据后通知了节点B,那么节点B之后对该数据的访问和修改都是基于A更新后的值。于此同时,和节点A无因果关系的节点C的数据访问则没有这样的限制。

2.3.2. Read your writes(读己之所写)

  读己之所写指的是:节点A更新一个数据后,它自身总是能访问到自身更新过的最新值,而不会看到旧值。其实也算一种因果一致性。

2.3.3. Session consistency(会话一致性)

  会话一致性将对系统数据的访问过程框定在了一个会话当中:系统能保证在同一个有效的会话中实现 “读己之所写” 的一致性,也就是说,执行更新操作之后,客户端能够在同一个会话中始终读取到该数据项的最新值。

2.3.4. Monotonic read consistency(单调读一致性)

  单调读一致性指的是:如果一个节点从系统中读取出一个数据项的某个值后,那么系统对于该节点后续的任何数据访问都不应该返回更旧的值。

2.3.5. Monotonic write consistency(单调写一致性)

  单调写一致性指的是:一个系统要能够保证来自同一个节点的写操作被顺序的执行。
  在实际的实践中,这5种系统往往会结合使用,以构建一个具有最终一致性的分布式系统。
  实际上,不只是分布式系统使用最终一致性,关系型数据库在某个功能上,也是使用最终一致性的。比如备份,数据库的复制过程是需要时间的,这个复制过程中,业务读取到的值就是旧的。当然,最终还是达成了数据一致性。这也算是一个最终一致性的经典案例。

2.4. 总结

  总体来说BASE理论面向的是大型高可用、可扩展的分布式系统。与传统ACID特性相反,不同于ACID的强一致性模型,BASE提出通过牺牲强一致性来获得可用性,并允许数据段时间内的不一致,但是最终达到一致状态。同时,在实际分布式场景中,不同业务对数据的一致性要求不一样。因此在设计中,ACID和BASE理论往往又会结合使用。