mysql 索引2

237 阅读3分钟

这是我参与8月更文挑战的第10天,活动详情查看:8月更文挑战

索引的分类

  • 从数据结构角度
  1. 树索引 (O(log(n)))
  2. Hash 索引
  • 从物理存储角度
  1. 聚集索引(clustered index)
  2. 非聚集索引(non-clustered index)
  • 从逻辑角度
  1. 普通索引
  2. 唯一索引
  3. 主键索引
  4. 联合索引
  5. 全文索引

1. 聚簇索引

聚簇索引是对磁盘上实际数据重新组织以按指定的一个或多个列的值排序的算法。特点是存储数据的顺序和索引顺序一致。一般情况下主键会默认创建聚簇索引,且一张表只允许存在一个聚簇索引。

聚簇索引和非聚簇索引的区别:

聚簇索引的叶子节点就是数据节点,而非聚簇索引的叶子节点仍然是索引节点,只不过有指向对应数据块的指针。

2. 哈希索引

哈希索引能以 O(1) 时间进行查找,但是失去了有序性。无法用于排序与分组、只支持精确查找,无法用于部分查找和范围查找。

InnoDB 存储引擎有一个特殊的功能叫“自适应哈希索引”,当某个索引值被使用的非常频繁时,会在 B+ 树索引之上再创建一个哈希索引,这样就让 B+Tree 索引具有哈希索引的一些优点,比如:快速的哈希查找。

3. 覆盖索引

如果一个索引包含了满足查询语句中字段与条件的数据就叫做覆盖索引。具有以下优点:

  1. 索引通常远小于数据行的大小,只读取索引能大大减少数据访问量。
  2. 一些存储引擎(例如:MyISAM)在内存中只缓存索引,而数据依赖于操作系统来缓存。因此,只访问索引可以不使用系统调用(通常比较费时)。
  3. 对于 InnoDB 引擎,若辅助索引能够覆盖查询,则无需访问主索引。

最左前缀原则

MySQL 使用联合索引时,需要满足最左前缀原则。下面举例对其进行说明:

1. 一个 2 列的索引 (name, age),对 (name)、(name, age) 上建立了索引;
2. 一个 3 列的索引 (name, age, sex),对 (name)、(name, age)、(name, age, sex) 上建立了索引。

1、 B+ 树的数据项是复合的数据结构,比如:(name, age, sex) 的时候,B+ 树是按照从左到右的顺序来建立搜索树的,比如:当(小明, 22, 男)这样的数据来检索的时候,B+ 树会优先比较 name 来确定下一步的所搜方向,如果 name 相同再依次比较 age 和 sex,最后得到检索的数据。但当 (22, 男) 这样没有 name 的数据来的时候,B+ 树就不知道第一步该查哪个节点,因为建立搜索树的时候 name 就是第一个比较因子,必须要先根据 name 来搜索才能知道下一步去哪里查询。

2、 当 (小明, 男) 这样的数据来检索时,B+ 树可以用 name 来指定搜索方向,但下一个字段 age 的缺失,所以只能把名字等于小明的数据都找到,然后再匹配性别是男的数据了, 这个是非常重要的性质,即索引的最左匹配特性。

关于最左前缀的补充:

  1. 最左前缀匹配原则会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如:a = 1 and b = 2 and c > 3 and d = 4 如果建立 (a, b, c, d) 顺序的索引,d 是用不到索引的。如果建立 (a, b, d, c) 的索引则都可以用到,a、b、d 的顺序可以任意调整。
  2. = 和 in 可以乱序,比如:a = 1 and b = 2 and c = 3 建立 (a, b ,c) 索引可以任意顺序,MySQL 的优化器会优化成索引可以识别的形式。