NLP 论文汇总
纠错
- Shulin Liu, Tao Yang, Tianchi Yue, FengZhang, Di Wang PLOME: Pre-training with Misspelled Knowledge for ChineseSpelling Correction[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics.2021
- Zhang S , Huang H , Liu J , et al. Spelling Error Correction with Soft-Masked BERT[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics 2020.
文本摘要
- Jeff Wu, Long Ouyang, Daniel M. Ziegler, et al. Recursively Summarizing Books with Human Feedback. OpenAI, 2021.
命名实体识别
- Huang Z , Wei X , Kai Y . Bidirectional LSTM-CRF Models for Sequence Tagging[J]. Computer Science, 2015.
- Lample G , Ballesteros M , Subramanian S , et al. Neural Architectures for Named Entity Recognition[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016.
- Chiu J , Nichols E . Named Entity Recognition with Bidirectional LSTM-CNNs[J]. Computer Science, 2015.
- Ma X , Hovy E . End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF[J]. 2016.
- Yang J , Zhang Y . NCRF++: An Open-source Neural Sequence Labeling Toolkit[C]// 2018.
- Zhang Y , Yang J . Chinese NER Using Lattice LSTM[J]. 2018.
- Peng M , Ma R , Zhang Q , et al. Simplify the Usage of Lexicon in Chinese NER[J]. 2019.
Sequence Labeling
- Akbik A , D Blythe, Vollgraf R . Contextual String Embeddings for Sequence Labeling. 2018.
机器翻译
- Cho K , Merrienboer B V , Gulcehre C , et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[J]. Computer Science, 2014.
- Attention Is All You Need[J]. arXiv, 2017.
GIS
- Lei Z , Lam N , Shams S , et al. Social and geographical disparities in Twitter use during Hurricane Harvey[J]. International Journal of Digital Earth, 2018, 12(1):1-19.
- Wang J , Y Hu, Joseph K . NeuroTPR: A neuro‐net toponym recognition model for extracting locations from social media messages[J]. Transactions in GIS, 2020(11).
词嵌入/Pre-train language representation model
- DE Rumelhart, Hinton G E , Williams R J . Learning Representations by Back Propagating Errors[J]. Nature, 1986, 323(6088):533-536.
- Bengio Y , Réjean Ducharme, Vincent P , et al. A Neural Probabilistic Language Model.[J]. Journal of Machine Learning Research, 2003.
- Mikolov T , Chen K , Corrado G , et al. Efficient Estimation of Word Representations in Vector Space[J]. Computer Science, 2013.
- Mikolov T , Sutskever I , Kai C , et al. Distributed Representations of Words and Phrases and their Compositionality[J]. Advances in neural information processing systems, 2013, 26.
- Le Q V , Mikolov T . Distributed Representations of Sentences and Documents. JMLR.org, 2014.
- Goldberg Y , Levy O . word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method[J]. arXiv, 2014.
- Rong X . word2vec Parameter Learning Explained[J]. Computer Science, 2014.
- Pennington J , Socher R , Manning C . Glove: Global Vectors for Word Representation[C]// Conference on Empirical Methods in Natural Language Processing. 2014.
- Devlin J , Chang M W , Lee K , et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[J]. 2018.
- Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving Language Understanding by Generative Pre-Training.
- Peters M , Neumann M , Iyyer M , et al. Deep Contextualized Word Representations[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 2018.
- Howard J , Ruder S . Universal Language Model Fine-tuning for Text Classification[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2018.
- Zhang Z , Han X , Liu Z , et al. ERNIE: Enhanced Language Representation with Informative Entities[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019.
语言模型
- Mikolov T . Language Modeling for Spech Recognition in Czech. 2007.
文本匹配
- Huang P S , He X , Gao J , et al. Learning deep structured semantic models for web search using clickthrough data[C]// Proceedings of the 22nd ACM international conference on Conference on information & knowledge management. ACM, 2013.
- Neculoiu P , Versteegh M , Rotaru M . Learning Text Similarity with Siamese Recurrent Networks[C]// Repl4NLP workshop at ACL2016. 2016.
- Wang S , Jing J . A Compare-Aggregate Model for Matching Text Sequences[J]. 2016.
- Chen Q , Zhu X , Ling Z , et al. Enhanced LSTM for Natural Language Inference[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2016.
- Wang Z , Hamza W , Florian R . Bilateral Multi-Perspective Matching for Natural Language Sentences[J]. 2017.
- Yi Tay†∗, Luu Anh Tuanψ∗, Siu Cheung Huiφ. Co-Stack Residual Affinity Networks with Multi-level Attention Refinement for Matching Text Sequences[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018.
- Pan B , Yang Y , Zhao Z , et al. Discourse Marker Augmented Network with Reinforcement Learning for Natural Language Inference[J]. 2019.
- Kim S , Kang I , Kwak N . Semantic Sentence Matching with Densely-connected Recurrent and Co-attentive Information[J]. 2018.
- Zhang K , Lv G , Wang L , et al. DRr-Net: Dynamic Re-Read Network for Sentence Semantic Matching[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33:7442-7449.
- Liu X , He P , Chen W , et al. Multi-Task Deep Neural Networks for Natural Language Understanding[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019.