计算机通用知识总结

271 阅读9分钟

理解计算机资源,认识进程与线程(单线程、单进程、多线程、多进程)

什么是进程?
当一个程序开始运行时,它就是一个进程,进程包括运行中的程序和程序所使用到的内存和系统资源。
而一个进程又是由多个线程所组成的。


什么是线程?
线程是程序中的一个执行流,每个线程都有自己的专有寄存器(栈指针、程序计数器等),但代码区是共享的,
即不同的线程可以执行同样的函数。


什么是多线程?
多线程是指程序中包含多个执行流,即在一个程序中可以同时运行多个不同的线程来执行不同的任务,
也就是说允许单个程序创建多个并行执行的线程来完成各自的任务。


多线程的好处:
可以提高CPU的利用率。在多线程程序中,一个线程必须等待的时候,CPU可以运行其它的线程而不是等待,
这样就大大提高了程序的效率。 


多线程的不利方面:
线程也是程序,所以线程需要占用内存,线程越多占用内存也越多; 
多线程需要协调和管理,所以需要CPU时间跟踪线程; 
线程之间对共享资源的访问会相互影响,必须解决竞用共享资源的问题;
线程太多会导致控制太复杂,最终可能造成很多Bug;


多线程与单线程的区别:
生活举例
你早上上班,正要打卡的时候,手机响了。。你如果先接了电话,等接完了,在打卡,就是单线程。
如果你一手接电话,一手打卡。就是多线程。
2件事的结果是一样的。。你接了电话且打了卡。

 

多线程处理的优点

同步应用程序的开发比较容易,但由于需要在上一个任务完成后才能开始新的任务,所以其效率通常比多线程应用程序低。如果完成同步任务所用的时间比预计时间长,应用程序可能会不响应。多线程处理可以同时运行多个过程。例如,文字处理器应用程序在您处理文档的同时,可以检查拼写(作为单独的任务)。由于多线程应用程序将程序划分成独立的任务,因此可以在以下方面显著提高性能: 
多线程技术使程序的响应速度更快,因为用户界面可以在进行其他工作的同时一直处于活动状态。 
当前没有进行处理的任务可以将处理器时间让给其他任务。 
占用大量处理时间的任务可以定期将处理器时间让给其他任务。 
可以随时停止任务。 
可以分别设置各个任务的优先级以优化性能。 

是否需要创建多线程应用程序取决于多个因素。在以下情况下,最适合采用多线程处理:
耗时或大量占用处理器的任务阻塞用户界面操作。 
各个任务必须等待外部资源(如远程文件或 INTERNET 连接)。 

例如,用于跟踪 WEB 页上的链接并下载满足特定条件的文件的 INTERNET 应用程序“ROBOT”。这种应用程序可以依次同步下载各个文件,也可以使用多线程同时下载多个文件。多线程方法比同步方法的效率高很多,因为即使在某些线程中远程 WEB 服务器的响应非常慢,也可以下载文件。

下面是多线程的例子
还在DOS时代,人们就在寻求一种多任务的实现。于是出现了TSR类型的后台驻留程序,比较有代表性的有SIDE KICK、VSAFE等优秀的TSR程序,这类程序的出现和应用确实给用户使用计算机带来了极大的方便,比如SIDE KICK,们编程可以在不用进编辑程序的状态下,一边编辑源程序,一边编译运行,非常方便。但是,DOS单任务操作系统的致命缺陷注定了在DOS下不可能开发出真正的多任务程序。进入WINDOWS3.1时代,这种情况依然没有根本的改变,一次应用只能做一件事。比如数据库查询,除非应用编得很好,在查询期间整个系统将不响应用户的输入。
进入了WINDOWS NT和WINDOWS 9X时代,情况就有了彻底的改观,操作系统从真正意义上实现了多任务(严格地说,WIN9X还算不上)。一个应用程序,在需要的时候可以有许多个执行线程,每个线程就是一个小的执行程序,操作系统自动使各个线程共享CPU资源,确保任一线程都不能使系统死锁。这样,在编程的时候,可以把费时间的任务移到后台,在前台用另一个线程接受用户的输入。对那些对实时性要求比较高的编程任务,如网络客户服务、串行通信等应用时,多线程的实现无疑大大地增强了程序的可用性和稳固性。


1。单进程单线程:一个人在一个桌子上吃菜。
2。单进程多线程:多个人在同一个桌子上一起吃菜。
3。多进程单线程:多个人每个人在自己的桌子上吃菜。

多线程的问题是多个人同时吃一道菜的时候容易发生争抢,例如两个人同时夹一个菜,一个人刚伸出筷子,结果伸到的时候已经被夹走菜了。。。此时就必须等一个人夹一口之后,在还给另外一个人夹菜,也就是说资源共享就会发生冲突争抢。


1。对于 Windows 系统来说,【开桌子】的开销很大,因此 Windows 鼓励大家在一个桌子上吃菜。因此 Windows 多线程学习重点是要大量面对资源争抢与同步方面的问题。


2。对于 Linux 系统来说,【开桌子】的开销很小,因此 Linux 鼓励大家尽量每个人都开自己的桌子吃菜。这带来新的问题是:坐在两张不同的桌子上,说话不方便。因此,Linux 下的学习重点大家要学习进程间通讯的方法。

参考:《进程、线程、单线程、多线程,单线程与多线程的区别》

总结:对于计算密集型多进程优势,对于io密集型多线程有优势。注意线程锁的应用。

线程与进程最大的区别在与,线程是调度的基本单位,而进程则是资源拥有的基本单位。 说白了,所谓内核中的任务调用,实际上的调度对象是线程;而进程只是给线程提供了虚拟内存、全局变量等资源。 所以,对于现场和进程,我们可以这么理解: 当进程只有一个线程时,可以认为进程就等于线程。 当进程拥有多个线程时,这些线程会共享相同的虚拟内存和全局变量等资源。这些资源在上下文切换时是不需要修改的。 另外,线程也有自己的私有数据,比如栈和寄存器等,这些在上下文切换时也是需要保存的。

了解阻塞与非阻塞、同步与异步任务等

网络IO的模型大致包括下面几种

  • 同步模型(synchronous IO)

    • 阻塞IO(bloking IO)
    • 非阻塞IO(non-blocking IO)
    • 多路复用IO(multiplexing IO)
    • 信号驱动式IO(signal-driven IO)
  • 异步IO(asynchronous IO)

    • 异步IO

网络IO的本质是socket的读取,socket在linux系统被抽象为流,IO可以理解为对流的操作。对于一次IO访问,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间,所以一般会经历两个阶段:

  1. 等待所有数据都准备好或者一直在等待数据,有数据的时候将数据拷贝到系统内核;
  2. 将内核缓存中数据拷贝到用户进程中;

对于socket流而言:

  1. 等待网络上的数据分组到达,然后被复制到内核的某个缓冲区;
  2. 把数据从内核缓冲区复制到应用进程缓冲区中;

参考: 阻塞和非阻塞,同步和异步 总结

进程间通信(IPC)常包括哪些方式,进程间同步机制又包括哪些方式

进程间通信是指在不同进程之间传播或交换信息,在Linux环境下,进程地址空间相互独立,每个进程各自有不同的用户地址空间,进程之间不能相互访问。必须通过内核才能进行数据交换。如图:

常见的通信方式有以下几种:

管道pipe
有名管道FIFO
消息队列MessageQueue
共享存储
信号量Semaphore
信号Signal
套接字Socket

参考:IPC进程之间通信的几种方式进程间通信(IPC)的几种方式

Socket与网络进程通信是怎样的关系、Socket连接过程是怎样的

Socket 是什么呢?   
Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面,对用户来说,一组简单的接口就是全部,让Socket去组织数据,以符合指定的协议。
你会使用它们吗?
前人已经给我们做了好多的事了,网络间的通信也就简单了许多,但毕竟还是有挺多工作要做的。以前听到Socket编程,觉得它是比较高深的编程知识,但是只要弄清Socket编程的工作原理,神秘的面纱也就揭开了。
一个生活中的场景。你要打电话给一个朋友,先拨号,朋友听到电话铃声后提起电话,这时你和你的朋友就建立起了连接,就可以讲话了。等交流结束,挂断电话结束此次交谈。
生活中的场景就解释了这工作原理,也许TCP/IP协议族就是诞生于生活中,这也不一定。 参考: Socket通信原理

简单了解数据库(事务、索引)

参考: 数据库事务和索引的简单理解

常见的设计模式有哪些、列举实际使用过的一些设计模式

参考: # 常见的设计模式有哪些?实际开发中你用了什么设计模式?

如何理解面向对象编程、对函数式编程的看法

参考: 函数式编程与面向对象编程的比较